Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Variable Valve Engine Applying Shuttle Cam Mechanism

1992-02-01
920450
Variable-valve-actuation mechanism is considered to be one of the most suitable solutions to realize the compatibility between higher power output and performances in the practical speed range. A new variable-valve-actuation mechanism named “Shuttle Cam” was designed and studied. In this mechanism which was applied to a conventional motorcycle engine with rocker arms and gear-train-driven valve system, the cam gears move along the idler gear. And cam shafts simultaneously slide along the rocker-arm slipper surfaces which are concentric with the idler gear. Consequently valve lift varies continuously in accordance with the alteration in the rocker-arm lever ratio and the cam phasing changes simultaneously in accordance with the cam gear rotation. Result of the experiments has confirmed that the mechanism functions accurately even at high speeds up to 10,000 rpm and some improvements were achieved in power output, fuel consumption, idling quality, and exhaust-noise level.
Technical Paper

A Statistical Tire Model Concept - Applications to Vehicle Development

2015-04-14
2015-01-1578
The tires are one of the most important parts of the vehicle chassis, as they significantly influence aspects such as vehicle's directional stability, braking performance, ride comfort, NVH, and fuel consumption. The tires are also a part whose size affects the vehicle's essential specifications such as wheelbase and track width. The size of the tires should therefore be determined in the initial stage of vehicle development, taking into account whether the size allows the vehicle to achieve the targeted overall performance. In estimations of vehicle performance, computer simulation plays more of an important role, and simulated tire models are designed to reproduce the measured tire characteristics of existing tires. But to estimate the chassis performance with various tire sizes or with tires of uncommon sizes, the prevailing modeling approach, “individual models for individual tires,” would not function well because of limited ability to expand tire models to unfamiliar sizes.
Technical Paper

A Study of Vehicle Equipped with Non-Throttling S.I. Engine with Early Intake Valve Closing Mechanism

1993-03-01
930820
To enable non-throttling operation of gasoline S.I. engine, we have manufactured engines equipped with a newly developed Hydraulic Variable-valve Train (HVT), which can vary its intake-valve closing-timing freely. The air-intake control ability of HVT engine is equivalent to conventional throttling engines. Combustion becomes unstable, however, under non-throttling operation at idling. For the countermeasure, newly designed combustion chamber has been developed. The reduction of pumping loss by the HVT depends on engine speed rather than load, and amounts to about 80 % maximum. A conventional engine-management system is not applicable for non-throttling operation. Therefore, new management system has been developed for load control.
Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

Ag-Type PM Oxidation Catalyst with Nd Added to Increase Contact Property between PM and Catalyst

2018-04-03
2018-01-0328
Honda diesel engine vehicles that go on the market in 2018 will be equipped with a newly developed silver (Ag)-type catalyzed diesel particulate filter (cDPF). Ag has high particulate matter (PM) oxidation performance, but conventional catalyst-carrying methods cause weak contact property between PM and Ag; therefore, the newly Ag-type cDPF was developed on the concept of enhancing the property of contact between PM and the catalyst to realize contact property enhancement at the macro, meso, and nano scales. As a result, the newly developed catalyst showed an enhancement of T90 performance by a factor of approximately 2 relative to the conventional Ag-type catalyst in fresh condition. Durability in the environment of an automobile in use was examined through hydrothermal aging, lean-rich (L/R) aging, sulfur (S) poisoning, and ash deposition. The results have confirmed that hydrothermal aging is the greatest factor in deterioration.
Journal Article

Application of Electric Servo Brake System to Plug-In Hybrid Vehicle

2013-04-08
2013-01-0697
An electric servo brake system applied for use on electric vehicles was applied for use on plug-in hybrid vehicles in order to achieve fuel-savings together with good brake feel and enhanced operability for plug-in hybrid vehicles. The electric servo brake system is made up of highly accurate braking pressure control that functions cooperatively with regenerative brakes together with a structure in which pedal force is not influenced by braking pressure control. The configuration of these components enabled good braking feel even when the power train was being switched from one drive mode to another. Automated pressurization functions that are intended for plug-in hybrid vehicles and that operate with electric servo brake systems were also developed. These developed functions include stall cooperative control that functions cooperatively with the power train, regenerative coordinate adaptive cruise control, and hill-start assist.
Journal Article

Application of Engine Load Estimation Method Using Crank Angular Velocity Variation to Spark Advance Control

2014-11-11
2014-32-0065
The technology to estimate engine load using the amplitude of crankshaft angular velocity variation during a cycle, which is referred to as “Δω (delta omega)”, in a four-stroke single-cylinder gasoline engine has been established in our former studies. This study was aimed to apply this technology to the spark advance control system for small motorcycles. The cyclic variation of the Δω signal, which affects engine load detection accuracy, was a crucial issue when developing the system. To solve this issue, filtering functions that can cope with various running conditions were incorporated into the computation process that estimates engine loads from Δω signals. In addition, the system made it possible to classify engine load into two levels without a throttle sensor currently used. We have thus successfully developed the new spark advance system that is controlled in accordance with the engine speed and load.
Technical Paper

Comparison of Three Active Chassis Control Methods for Stabilizing Yaw Moments

1994-03-01
940870
Using stabilizing yaw-moment diagrams, the authors analyzed three methods of active chassis control for their effect and effective ranges during cornering maneuvers. The following results were obtained: controlling the transverse distribution of driving and braking forces cancels the changes in a vehicle's dynamic characteristics caused by acceleration and deceleration. Controlling the distribution of roll stiffness is only effective in ranges with high lateral acceleration, and the effect varies depending on the longitudinal weight distribution. Controlling the rear wheel steering angle is most effective in a range with a small side slip angle, but this effect decreases with an increase in the angle, especially during deceleration.
Technical Paper

Control Device of Electronically Controlled Fuel Injection System of Air-cooled Engines for Small Motorcycles

2004-03-08
2004-01-0901
In conventional electronically controlled fuel injection systems, when the battery is inadequately charged, the small amount of electric power generated from the alternator by the kick starter operation is consumed by all electrical loads including the battery. This causes a voltage drop, hence the fuel injection system does not function due to a power shortage. To eliminate the power shortage, an installed relay circuit opens all electric loads other than the fuel injection system. This allows the fuel injection system to use all the electric power generated by the kick starter operation aided through using an additionally incorporated condenser. This type of electric power control system has been incorporated into the ECU. Thus, the control system has been realized that permits starting of an engine by using the kick-starter even when the battery is completely discharged.
Journal Article

Detect the Imperceptible Drowsiness

2010-04-12
2010-01-0746
Prediction of drowsiness based on an objective measure is demanded in machine and vehicle operations, in which human error may cause fatal accidents. Recently, we focused on the pupil which is controlled by the autonomic nervous system, easily and non-invasively observable from the outside of the body. Prior to the large low frequency pupil-diameter fluctuation, which is known to associate with drowsiness, a Gradual Miosis was observed in most subjects. During this miosis period, the subjects were not yet aware of their drowsiness. We have developed a software system which automatically detects the Gradual Miosis in real time.
Technical Paper

Development of Active Noise Control System Optimized for Road Noise Reduction

2023-05-08
2023-01-1040
In this paper, a newly developed Active Noise Control (ANC) system is introduced, that effectively reduces road noise, which becomes a major issue with electrified vehicles, and that enhances vehicle interior sound levels matching seamless acceleration by electric drive. Conventionally, reducing road noise using ANC requires numerous sensors and speakers, as well as a processor with high computing power. Therefore, the increase in system cost and the complexity of the system are obstacles to its spread. To overcome these issues, this system is developed based on four concepts. The first is a modular system configuration with unified interface to apply to various vehicle types and grades. The second is the integration and optimal placement of noise source reference sensors to achieve both reduction in number of parts and noise reduction performance.
Technical Paper

Development of Electronically Controlled Belt-type CVT for Motorcycles

2005-10-12
2005-32-0024
An electronically controlled belt-type CVT (Continuously Variable Transmission) has been developed for scooter type two-wheeled vehicles. Related to two-wheeled vehicles, the electronically controlled belt-type CVT has advantages over the conventional belt-type CVT, such as more compact and lighter weight. This was achieved by developing a new rubber belt-type. The new rubber belt-type CVT uses a rubber belt with high friction coefficient and pulleys made of aluminum. To obtain good shifting characteristics, the desired speed ratio related to throttle opening and drive speed is calculated. When moving, the actual speed ratio automatically adjusts to the desired value. For the shift modes, three shift modes, two automatic modes and one manual mode with six-speeds were prepared. The electronically controlled CVT increased the range of usable engine speeds compared to the conventional belt-type CVT. Therefore good drivability is maintained.
Journal Article

Development of Feedback-Based Active Road Noise Control Technology for Noise in Multiple Narrow-Frequency Bands and Integration with Booming Noise Active Noise Control System

2015-04-14
2015-01-0660
When a vehicle is in motion, noise is generated in the cabin that is composed of noise in multiple narrow-frequency bands and caused by input from the road surface. This type of noise is termed low-frequency-band road noise, and its reduction is sought in order to increase occupant comfort. The research discussed in this paper used feedback control technology as the basis for the development of an active noise control technology able to simultaneously reduce noise in multiple narrow-frequency bands. Methods of connecting multiple single-frequency adaptive notch filters, a type of adaptive filter, were investigated. Based on the results, a method of connecting multiple filters that would mitigate mutual interference caused by different controller transmission characteristics was proposed.
Technical Paper

Development of High Efficiency Next-Generation SH-AWD Rear Drive Unit

2015-04-14
2015-01-1098
One primary concern with applying an AWD system to a front wheel drive (FWD) vehicle architecture is the additional weight and drag associated with the AWD drivetrain components, resulting in an increase in fuel consumption compared to FWD-only models. Therefore, Honda recently developed a next-generation integrated AWD unit that reduces weight and drag loss, and increases the SH-AWD cornering performance while maintaining the performance requirements of the previous rear drive unit. These targets were achieved primarily through the application of hydraulically-actuated clutches and an increase in the “speed-increasing ratio”. This paper describes the development, system validation and future technology implications of this recent advancement.
Technical Paper

Development of Intake Air Pressure Sensorless Fuel Injection System for Small Motorcycles

2011-11-08
2011-32-0564
A new control system using O₂ feedback control has been developed as an alternative to intake air pressure sensors. This control method uses the operational condition compensation coefficient Kbu. This coefficient encompasses the state of the engine and environmental conditions such as atmospheric pressure, and corrects fuel injection in response to changes in these factors. Kbu makes it possible to control the amount of fuel injection without depending on an intake air pressure sensor. It also makes it possible to carry out the appropriate air-fuel ratio correction even at times when O₂ feedback control is not operating, such as the cold period, when the engine is first started, or during transient operation, by using Kbu values recorded in the Engine Control Unit (henceforth ECU).
Journal Article

Development of Li-ion Battery Control Technology for HEV

2015-04-14
2015-01-0251
The mounting of lithium-ion batteries (LIB) in hybrid electric vehicles (HEV) calls for the configuration of highly robust control systems. When mounting LIBs in the vehicle, it is important to accurately ascertain and precisely control the state of the battery. In order to achieve high durability, it is important to configure highly reliable systems capable of dependably preventing overcharging as well as to have control technology based on software that can contribute to extended battery life. The system configuration applies an overcharge prevention system that uses voltage detection with an emphasis on reliability. Furthermore, a method for varying the range of state of charge (SOC) control in the vehicle according to the battery state is implemented to assure durability. In order to achieve this, battery-state detection technology was developed for the purpose of correctly detecting and judging the battery state.
Technical Paper

Development of Multi-use Road Simulator

1993-11-01
931912
A multi-use road simulator for reproducing various road loads on motorcycles and buggies has been developed on a test bench by using computer-controlled hydraulic actuators. The device is controlled by a low-priced personal computer and an interface system with custom software. An unique feature is the capability to simulate loads related to such phenomena as the bottoming of suspension and the movement of a telescopic type front fork on the road.
Technical Paper

Development of Programmed-Fuel Injection for Two-Stroke Cycle Racer Engine

1991-11-01
911224
An electronically controlled fuel injection system for controlling the air/fuel (A/F) ratio has been looked forward as a means for improving drivability, output characteristics, and fuel consumption of two-stroke cycle motorcycle racer engines. However, actual installation of such a system on a high output two-stroke cycle engine (which utilizes exhaust gas pressure pulsation effects) has been considered difficult for the following reasons. Fluctuation in the delivery ratio (L) during firing and misfiring becomes great due to effects from the exhaust pipe. Applying the control method used for conventional four-stroke cycle engines (by which the delivery ratio (L) is measured) would necessitate a large and heavy system. The authors have eliminated such problems by developing an electronically controlled fuel injection system, the PGM-FI (Programmed-Fuel Injection) system, which employs basic intake air flow data according to engine speed (NE) and throttle opening (θTH).
Technical Paper

Development of a Lightweight and Compact 1kVA-Class Portable Generator

1999-09-28
1999-01-3304
The development of the lightweight and compact EU1000i generator with a maximum output of 1kVA is presented. The technology applied to achieve the required levels of exhaust emission, fuel consumption and noise, and to provide a stable electrical power supply with low waveform distortion is described. The technology comprises of four elements: a high-speed, multi-pole, external rotor type alternator, a microcomputer-controlled sine wave inverter, a compact high-speed 4-stroke engine with electronic speed governing, and a lightweight frame with a two-level noise-damping system. Combination of these four elements of technology has achieved 50% less weight, 25-30% lower fuel consumption, and 7-9dB(A) less noise than the previous model. The emission levels of CO and of NOx + HC are also 30% and 65% lower than the 2000 CARB regulations.
Technical Paper

Development of a Power Train for the Hybrid Automobile - the Civic Hybrid

2003-03-03
2003-01-0083
In order to contribute to the resolution of global environmental problems and to respond to the issue of diminishing resources, the Civic Hybrid, a hybrid passenger automobile has been developed to achieve both low emissions and low fuel consumption. The hybrid system takes the conventional Honda IMA (Integrated Motor Assist) system as its foundation. 4-cylinder, 1.3L SOHC, 2-plug engine i-DSI (DSI: Dual and Sequential Ignition) has been selected and modified for lean burn combustion. In addition, a cylinder idling system to increase the amount of electrical energy regenerated during deceleration has been adopted, among other technology. The ultra-thin DC brushless motor has been modified with its magnetic circuit to improve maximum regenerative torque by approximately 30%. Thanks to a new power train that improves CVT transfer efficiency, low fuel consumption of 48mpg in the city and 47mpg on the highway (the 5MT vehicle is 46mpg in the city and 51mpg on the highway) is achieved.
X