Refine Your Search

Topic

Author

Search Results

Technical Paper

47 Development of a Titanium Material by Utilizing Off-Grade Titanium Sponge

2002-10-29
2002-32-1816
Titanium alloy for forging and pure titanium material for exhaust systems have been developed. The forging alloy will be applied to production of lightweight motorcycle frames and the pure titanium will be applied to improve engine performance. The materials have been made inexpensive by the use of off-grade sponge that includes many impurities for production of titanium ingot. Stable characteristics have been obtained by controlling oxygen equivalent after setting the volume of tolerable impurities by considering mechanical properties and production engineering. In spite of low-cost, the material provides the same design strength compared to conventional material, and enables parts production with existing equipment. A review of manufacturing and surface treatment processes indicated a reduction in the price of titanium parts produced with this new material.
Technical Paper

A Study of Compatibility Test Procedure in Frontal Impact

2003-05-19
2003-06-0168
The purpose of this study is to examine compatibility test procedures proposed in the IHRA Vehicle Compatibility Working Group. Various crash tests were conducted with different vehicle weights and stiffness in our previous study, and each of the compatibility problems, namely mass; stiffness and geometric incompatibility were identified in these tests. In order to improve the compatibility, it is necessary to evaluate and control relevant vehicle characteristics of compatibility in test procedures. According to the IHRA study, relevant aspects for compatibility in frontal impact are: Good structural interaction; Frontal stiffness matching; Maintaining passenger compartment integrity; Control the deceleration time histories of impacting cars.
Technical Paper

A System for the Modal Analysis of Exhaust Emissions from Motorcycles

1981-02-01
810297
Devices for use in control of exhaust emissions have become indispensable to motorcycles. In order to evaluate quantitatively the effect of each device, the modal analysis system has to be required. The Modal Analysis System is one that classifies any driving schedule which is used for emissions measurement into four modes: idle, acceleration, cruise, and deceleration; then measures the emissions continuously using a mini-computer which accumulates the results of the analysis by mode. Instead of CO2 tracer method, we introduced the method of diluted exhaust gas measurement. In order for the system to produce reliable measurements, the accuracy of the total installation must be ensured. This paper describes the improvements of accuracy of analysers, technique on handling delay time and the verifications on the modal analysis system.
Technical Paper

Acceleration of Iterative Vibration Analysis for Form Changes in Large Degrees-of-Freedom Engine Model

2018-04-03
2018-01-1290
Operational analysis of automotive engines using flexible multi-body dynamics is increasingly important from the viewpoint of multi-objective optimization as it can predict not only vibration, but also stress and friction at the same time. Still, the finite element (FE) models used in this analysis have large degrees-of-freedom, so iterative calculation takes a lot of time when there is form change. This research therefore describes a technique that applies a modal differential substructure method (a technique that reduces the degrees of freedom in a FE model) that can simulate form changes in FE models by changing modal mass and modal stiffness in reduced models. By using this method, non-parametric form change in FE model can be parametrically simulated, so it is possible to speed up repeated vibration calculations. In the proposed method, FE model is finely divided for each form change design area, and a reduced model of that divided structure is created.
Technical Paper

Analysis of CVT Element Vibration by In-Situ Measurement

2020-04-14
2020-01-0906
When the belt contacts a pulley in a pushing belt-type CVT, vibration is generated by frictional force due to rubbing between the individual elements that are components of the belt, which is said to increase wear and noise. The authors speculated that the source of that vibration is misalignment of the secondary pulley and primary pulley V-surfaces. To verify that phenomenon, a newly developed micro data logger was attached to an element of a mass-produced metal pushing V-belt CVT and the acceleration was measured at rotations equal to those at drive (1000 to 2500 r/m). In addition, the results of calculations using a behavior analysis model showed that changes in pulley misalignment influence element vibration, and that the magnitude of the vibration is correlated to the change in the metal pushing V-belt alignment immediately before the element contacts the pulley.
Journal Article

Anisotropic Material Damage Model of Randomly Oriented Thermoplastic Composites for Crash Simulation

2020-04-14
2020-01-1305
In this research, a material model was developed that has orthotropic properties with respect to in-plane damage to support finite element strength analysis of components manufactured from a randomly oriented long-fiber thermoplastic composite. This is a composite material with randomly oriented bundles of carbon fibers that are approximately one inch in length. A macroscopic characteristic of the material is isotropic in in-plane terms, but there are differences in the tension and compression damage properties. In consideration of these characteristics, a material model was developed in which the damage evolution rate is correlated with thermodynamic force and stress triaxiality. In-plane damage was assumed to be isotropic with respect to the elements. In order to validate this material model, the results from simulation and three-point bending tests of closed-hat-section beams were compared and found to present a close correlation.
Technical Paper

Conceptual Simulation for Plug-In HEV at Early Stage of Development

2015-04-14
2015-01-0980
This study aims to build a conceptual simulation used at the early stage of PHEV development. This simulation enables to design vehicle concept and fundamental architecture with regard to fuel economy, vehicle acceleration and electric range. The model based on forward-looking method comprises of plant-model and controller-model which are made by one-dimensional simulation tool “GT-SUITE” and Matlab/SIMULINK respectively. In order to automatically couple between them and to implement iterative calculations of SOC (State-of-Charge) convergence, optimization and automation tool “modeFRONTIER” was used. As a case study of this simulation, we adopted series-parallel type plug-in hybrid electric vehicle (PHEV) and demonstrated the results on fuel economy of a legislative driving cycle and 0-60mph vehicle acceleration. Moreover, procedures to identify component specifications meeting vehicle targets and requirements at the early stage of vehicle development were concretely described.
Journal Article

Development and Application of FM Multipath Distortion Rate Measurement System Using a Fading Emulator Based on Two-Stage Method

2016-04-05
2016-01-0082
The suitability of FM radio receivers for automobiles has conventionally been rated by evaluating reception characteristics for broadcast waves in repeated driving tests in specific test environments. The evaluation of sound quality has relied on the auditory judgment due to difficulties to conduct quantitative evaluations by experiments. Thus the method had issues in terms of the reproducibility and objectivity of the evaluations. To address these issues, a two-stage method generating a virtual radio wave environment on a PC was developed. The research further defined the multipath distortion rate, MDr, as an index for the sound quality evaluation of FM receivers, and the findings concerning the suitability of the evaluation of FM terminals for automobiles were reported at the 2015 SAE World Congress.
Technical Paper

Development of Fuel Cell Boost Converter Using Coupled-Inductor for New FCV

2017-03-28
2017-01-1224
A new fuel cell voltage control unit (FCVCU) has been developed for a new fuel cell vehicle (FCV). In order to simultaneously reduce the electric powertrain size and increase the driving motor power, the FCVCU is needed to boost the voltage supplied from the fuel cell (FC) stack to the driving motor. The FCVCU circuit configuration has four single-phase chopper circuits arranged in parallel to form a 4-phase interleaved circuit. The intelligent power module (IPM) is a full SiC IPM, the first known use to date in a mass production vehicle, and efficiency has been enhanced by making use of the effects of the increased frequency to reduce both the size of the unit and the loss from passive parts. In addition, a coupled inductor was used to reduce the inductor size. As a result, the inductor volume per unit power was reduced approximately 30% compared to the previous VCU inductor.
Technical Paper

Development of Fuel Cell Vehicle with Next-generation Fuel Cell Stack

2006-04-03
2006-01-0034
In 2002, to address environmental and energy issues, Honda began to deliver a fuel cell vehicle, the FCX. Now, Honda has developed a new model FCX, which is able to operate in cold regions with significantly enhanced driving performance, in an attempt to increase the popularity of fuel cell vehicles in the world. The new vehicle employs Hondas next-generation fuel cell stack which enables start-up and allows for power generation at - 20 ° C, and Honda has delivered new FCXs to customers where winter temperatures fall to -20 ° C--in New York state, US and Hokkaido, Japan-leading the world. As the motor power-output has been increased to 80kW increases in both the power-output of the fuel cell stack and the energy capacity of the ultra-capacitors have enabled an increased supply of power to ° the motor, resulting in significant enhancement of both initial and overtake acceleration performance.
Technical Paper

Development of High-Power-Density DC-DC Converter Using Coupled Inductors for Clarity Plug-In Hybrid

2018-04-03
2018-01-0458
Honda has developed an electric powertrain for a 2017 plug-in hybrid vehicle using its second-generation SPORT HYBRID i-MMD powertrain system as a base. The application of the newly developed powertrain system realizes a long all-electric range (AER), allowing operation as an EV for almost all everyday driving scenarios, with dynamic performance making it possible for the vehicle to operate as an EV across the entire speed range, up to a maximum speed of 100 mph. The amount of assist provided by power from the batteries during acceleration has been increased, helping to downsize the engine while also balancing powerful acceleration with quietness achieved by controlling racing of the engine. In order to realize this EV performance with the second-generation SPORT HYBRID i-MMD system as the base, it was necessary to increase the power output of the DC-DC converter, taking restrictions on space into consideration.
Technical Paper

Development of Multi-use Road Simulator

1993-11-01
931912
A multi-use road simulator for reproducing various road loads on motorcycles and buggies has been developed on a test bench by using computer-controlled hydraulic actuators. The device is controlled by a low-priced personal computer and an interface system with custom software. An unique feature is the capability to simulate loads related to such phenomena as the bottoming of suspension and the movement of a telescopic type front fork on the road.
Journal Article

Development of New Hydrogen Fueling Method for Fuel Cell Motorcycle

2017-03-28
2017-01-1184
A new hydrogen fueling protocol named MC Formula Moto was developed for fuel cell motorcycles (FCM) with a smaller hydrogen storage capacity than those of light duty FC vehicles (FCV) currently covered in the SAE J2601 standard (over than 2kg storage). Building on the MC Formula based protocol from the 2016 SAE J2601 standard, numerous new techniques were developed and tested to accommodate the smaller storage capacity: an initial pressure estimation using the connection pulse, a fueling time counter which begins the main fueling time prior to the connection pulse, a pressure ramp rate fallback control, and other techniques. The MC Formula Moto fueling protocol has the potential to be implemented at current hydrogen stations intended for fueling of FCVs using protocols such as SAE J2601. This will allow FCMs to use the existing and rapidly growing hydrogen infrastructure, precluding the need for exclusive dispensers or stations.
Technical Paper

Development of Traction Motor for New Fuel Cell Vehicle and New Electric Vehicle

2018-04-03
2018-01-0450
Honda’s purpose is to realize the joy and freedom of mobility and a sustainable society in which people can enjoy life. As such, three series of environmental vehicles-FCVs, BEVs, and PHEVs-have been developed so that users in communities around the world can select the ones best suited to their local energy circumstances and individual lifestyles. This paper discusses a structure that enhances both the motive power performance and quietness of a newly developed FCV/BEV traction motor. To enhance motive power performance, the research focused on the stator lamination technique. As for methods of affixing the stator’s layers, the practice with previous models has been adhesion lamination, using electric steel sheets that come pre-made with adhesive layers. Having adhesive layers, however, lowers the ratio (space factor) of steel sheet layers. The new motor uses electric steel sheets without an adhesive layer in order to enhance motive power performance.
Journal Article

Development of the Methodology for FCV Post-crash Fuel Leakage Testing Incorporated into SAE J2578

2010-04-12
2010-01-0133
This paper explains the new methodology for post-crash fuel leakage testing of Fuel Cell Vehicles (FCVs) and other hydrogen vehicles utilizing compressed hydrogen storage systems. This methodology was incorporated into SAE J2578 that was revised and published in January, 2009. The new methodology is based on the concept in FMVSS 303 that specifies post-crash fuel leakage test method and criteria for CNG vehicle and adopted some modifications. Specifically, the following items are addressed: (1) Allowable leakage can be accurately evaluated in test even with large size tank that obtains only small pressure drop when a given amount of leakage occurs. A new method to deal with the influence of measurement errors was devised. (2) Even though only one option of test gas and initial filling pressure is accepted in FMVSS 303, new methodology for hydrogen system allows helium and hydrogen at reduced pressure as alternatives in addition to hydrogen at service pressure.
Technical Paper

Dynamic Simulation Software for Prediction of Hydrogen Temperature and Pressure during Fueling Process

2018-04-03
2018-01-1304
In this study, in order to relax the pre-cooling regulations at hydrogen fueling stations, we develop a software algorithm to simulate an actual hydrogen fueling process to Fuel Cell Vehicle (FCV) tanks. The simulation model in the software consists of the same filling equipment found at an actual hydrogen fueling station. Additionally, the same supply conditions (pre-cooling temperature, pressure and mass flow rate) as at a hydrogen fueling station were set to the simulation model. Based on the supply conditions, the software simulates the temperature and pressure of hydrogen in each part of filling equipment. In order to verify the accuracy of the software, we compare the temperature and pressure simulated at each stage of the filling process with experimental data. We show that by using the software it is possible to accurately calculate the hydrogen temperature and pressure at each point during the fueling process.
Journal Article

ERRATUM: Study of Reproducibility of Pedal Tracking and Detection Response Task to Assess Driver Distraction

2015-04-14
2015-01-1388.01
1. On page 111, the authors have described a method to assess driver distraction. In this method, participants maintained a white square size on a forward display by using a game gas pedal of like in car-following situation. The size of the white square is determined by calculating the distance to a virtual lead vehicle. The formulas to correct are used to explain variation of acceleration of the virtual lead vehicle. The authors inadvertently incorporated old formulas they had used previously. In the experiments discussed in the article, the corrected formulas were used. Therefore, there is no change in the results. The following from the article:
Technical Paper

Electric Power Control System for a Fuel Cell Vehicle Employing Electric Double-Layer Capacitor

2004-03-08
2004-01-1006
A fuel-cell-vehicle has been provided with an electric-double-layer-capacitor system (capacitor) to act as a back-up power source. The fuel cells and the capacitor have different voltages when the system is started, and for this reason the system could not be reconnected by relays. A VCU (Voltage and current Control Unit) has been positioned in the path of electrical connection between the fuel cells and the capacitor as a method of dealing with this issue. The VCU enables the charging of the capacitor to be controlled in order to equalize the voltage of the two power sources and allow a connection.
Technical Paper

Formulation of Model for Estimation of Battery Capacity Degradation Based on Usage History

2013-04-08
2013-01-0501
As the electric vehicle (EV) market expands and we enter the period of fully fledged diffusion of the vehicles, evaluation of battery performance when secondhand vehicles are sold and when batteries are put to alternative uses will become increasingly important. However, the accurate measurement of battery performance for the purpose of battery evaluation represents a challenge when the batteries are fitted in a battery pack consisting of multiple cells. The authors therefore formulated a degradation estimation model for the evaluation of battery performance based on battery usage history. To formulate the model, parameters expressing the internal state of the battery are estimated from the battery's usage history; battery capacity is estimated with consideration of these parameters.
Technical Paper

Honda Fuel Cell Electric Vehicle Development

2011-05-17
2011-39-7240
Honda has been taking measures since the late 1990s to address three issues raised by the automobile, from air pollution, which was already a matter of regulation, to the additional issues of global warming and energy. With observation of recent trends in society, what had been our concern about these three matters appears to have gradually been turning into certainty instead. Meanwhile, the demand for automobiles is expected to increase with the population growth in newly emerging countries, economic growth, and other such factors. At present, with automobiles dependent on oil for the greater part of their energy, it has become a challenge to secure a stable supply of reasonably priced oil while the global warming perspective requires reduction of CO2 emissions. This article will review the history of development of the fuel cell vehicle (FCV) equipped with the next-generation power plant capable of simultaneously providing the solutions demanded for all three automobile issues.
X