Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

47 Development of a Titanium Material by Utilizing Off-Grade Titanium Sponge

2002-10-29
2002-32-1816
Titanium alloy for forging and pure titanium material for exhaust systems have been developed. The forging alloy will be applied to production of lightweight motorcycle frames and the pure titanium will be applied to improve engine performance. The materials have been made inexpensive by the use of off-grade sponge that includes many impurities for production of titanium ingot. Stable characteristics have been obtained by controlling oxygen equivalent after setting the volume of tolerable impurities by considering mechanical properties and production engineering. In spite of low-cost, the material provides the same design strength compared to conventional material, and enables parts production with existing equipment. A review of manufacturing and surface treatment processes indicated a reduction in the price of titanium parts produced with this new material.
Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
Technical Paper

A Grammatical Evolution Approach to System Identification of Laser Lap Welding

2006-04-03
2006-01-1614
Laser lap welding quality is a non-linear response based on a host of categorical and numeric material and process variables. This paper describes a Grammatical Evolution approach to the structure identification of the laser lap welding process and compares its performance with linear regression and a neuro-fuzzy inference system.
Technical Paper

A Graphical Representation of Road Profile Characteristics

2004-03-08
2004-01-0769
Load data representing severe customer usage is required during the chassis development process. One area of current research is the use of road profiles for predicting chassis loads. The most direct method of predicting these loads is to run dynamic simulations of the vehicle using numerous road profiles as the excitation. This onerous task may be avoided, and a greatly reduced number of simulations would be required, if roads having similar characteristics can be grouped. Currently, road profiles are characterized by their spectral content. It has been noted by several researches, however, that road profiles are generally nonstationary signals that contain significant transient events and are not well described in the spectral domain. The objective of this work, then, is to develop a method by which the characteristics of the road can be captured by describing these constitutive transient events.
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

A Simple Approach to Selecting Automotive Body-in-White Primary-Structural Materials

2002-07-09
2002-01-2050
A simple strategy for building lightweight automobile body-in-whites (BIWs) is developed and discussed herein. Because cost is a critical factor, expensive advanced materials, such as carbon fiber composites and magnesium, must only be used where they will be most effective. Constitutive laws for mass savings under various loading conditions indicate that these materials afford greater opportunity for mass saving when used in bending, buckling or torsion than in tensile, shear or compression. Consequently, it is recommended that these advanced materials be used in BIW components subject to bending and torsion such as rails, sills, “A-B-C” pillars, etc. Furthermore, BIW components primarily subject to tension, compression, or shear, such as floor pans, roofs, shock towers, etc., should be made from lower cost steel. Recommendations for future research that are consistent with this strategy are included.
Technical Paper

A Study of Forces Acting on Rings for Metal Pushing V-Belt Type CVT

1997-02-24
970686
Four forces act in rings for a metal pushing V-belt. These forces are: two kinds of intercepting forces which prevent blocks from going outside of pulleys (one caused by pulley thrust, the other caused by centrifugal force), frictional force acting between the rings and the blocks, and bending force in longitudinal direction. In the previous paper (1)(2)(3)(5), distribution of three forces, excluding centrifugal force, were presented at low belt speed. We successfully measured all four kinds of forces including centrifugal force continuously at practical operation conditions for layered rings. In this paper, distribution of these four forces on the innermost ring is described at steady states.
Technical Paper

A Study of a Metal Pushing V-Belt Type CVT-Part 2: Compression Force Between Metal Blocks and Ring Tension

1993-03-01
930667
In this study, distributions of block compression force on the driving and driven pulleys were measured using a tiny load-cell inserted between two blocks and a telemeter system, under several constant speed ratios. Ring tension distributions were also measured using a specially devised block. From the experimental results, the following conclusions were drawn: (1) Block compression force distribution on the driving pulley is significantly different from that on the driven pulley. (2) Ring tension takes different value at each side of strings. It is considered that this phenomenon is caused by difference of saddle surface speed between two pulleys.
Technical Paper

Acceleration of Iterative Vibration Analysis for Form Changes in Large Degrees-of-Freedom Engine Model

2018-04-03
2018-01-1290
Operational analysis of automotive engines using flexible multi-body dynamics is increasingly important from the viewpoint of multi-objective optimization as it can predict not only vibration, but also stress and friction at the same time. Still, the finite element (FE) models used in this analysis have large degrees-of-freedom, so iterative calculation takes a lot of time when there is form change. This research therefore describes a technique that applies a modal differential substructure method (a technique that reduces the degrees of freedom in a FE model) that can simulate form changes in FE models by changing modal mass and modal stiffness in reduced models. By using this method, non-parametric form change in FE model can be parametrically simulated, so it is possible to speed up repeated vibration calculations. In the proposed method, FE model is finely divided for each form change design area, and a reduced model of that divided structure is created.
Journal Article

Advanced Transient Simulation on Hybrid Vehicle Using Rankine Cycle System

2008-04-14
2008-01-0310
A hybrid simulation model in the transient bench was developed to realize the characteristics of the transient behavior and the fuel economy equivalent to that of a real vehicle. The motors and the batteries that were main components of the hybrid vehicle system were simulated as constructive modules, the functions of which have the integrated control and the input/output (I/O) function with real components. This model enabled us to accommodate a variety of auxiliary (AUX) I/O flexibly. The accuracy of the model was verified by the transient characteristics of the engine and the fuel economy result through correlation with a mass-produced vehicle. Furthermore, the flexibility of the model to a variety of AUX I/O was examined from the simulation test of the vehicle equipped with the waste heat recovery (WHR) system.
Technical Paper

Advancing the State of Strong Hybrid Technology

2006-10-16
2006-21-0058
As the hybrid automotive market becomes quickly saturated with highly competitive products and vehicles, auto manufacturers struggle with business models and the combination of current manufacturing with next generation development. The hybrid development cooperation amongst General Motors, DaimlerChrysler, and BMW offers a new business model that promotes the advancement of the state of strong hybrid technology while maintaining the strong global leadership and competition.
Technical Paper

Analysis of FM Multipath Distortion using Two-Stage and MUSIC Methods

2014-04-01
2014-01-0286
Traditionally, the suitability of wireless terminals for automotive use has been evaluated by conducting repeated driving tests in actual environments. However, this method of evaluation has long presented issues, and the implementation of the method itself is today becoming increasingly challenging. A method of evaluating the suitability of terminals for onboard use by generating virtual radio wave environments on a PC has therefore been developed by applying a two-stage method to multiple-input multiple-output (MIMO)-over-the-air(OTA) evaluation. The radio wave propagation characteristics necessary for the generation of these virtual radio wave environments are set using the multiple signal classification method incorporating an RF recorder. The research discussed in this paper used these methods to analyze the effect of the multipath distortion rate on sound quality in the reception of FM broadcasts.
Technical Paper

Analysis of Stress Distribution of Timing Belts by FEM

1997-02-24
970919
A model of a timing belt analyzed by FEM (a general non-linear finite element program:ABAQUS) successfully confirmed the mechanism that generates belt cord stress. Analysis revealed a good correlation between the experimental and computed results of stress distribution of the belt cord. Through calculation, it was discovered that belts broke near the tooth root, which is the point of maximum stress of the cord.
Technical Paper

Analysis of the Pressure Drop Increase Mechanism by Ash Accumulated of Coated GPF

2019-04-02
2019-01-0981
With accelerating exhaust gas regulations in recent years, not only CO / HC / NOx but also PN regulation represented by Euro 6 d, China 6 are getting stricter. PN reduction by engine combustion technology development also progresses, but considering RDE, PN reduction by after treatment technology is also indispensable. To reduce PN exhausted from the gasoline engine, it is effective to equip GPF with a filter structure. Considering the installation of GPF in limited space, we developed a system that so far replaces the second TWC with GPF for the TWC 2 bed system. In order to replace the second TWC with GPF, we chose the coated GPF with filtering and TWC functions. Since the initial pressure drop and the catalyst amount (purification performance) of coated GPF have a conflicting relationship, we developed the coated GPF that can achieve both the low initial pressure drop and high purification performance.
Journal Article

Anisotropic Material Damage Model of Randomly Oriented Thermoplastic Composites for Crash Simulation

2020-04-14
2020-01-1305
In this research, a material model was developed that has orthotropic properties with respect to in-plane damage to support finite element strength analysis of components manufactured from a randomly oriented long-fiber thermoplastic composite. This is a composite material with randomly oriented bundles of carbon fibers that are approximately one inch in length. A macroscopic characteristic of the material is isotropic in in-plane terms, but there are differences in the tension and compression damage properties. In consideration of these characteristics, a material model was developed in which the damage evolution rate is correlated with thermodynamic force and stress triaxiality. In-plane damage was assumed to be isotropic with respect to the elements. In order to validate this material model, the results from simulation and three-point bending tests of closed-hat-section beams were compared and found to present a close correlation.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Application of HIL Simulations for the Development of Vehicle Stability Assist System

2002-03-04
2002-01-0816
The Vehicle Stability Assist (VSA) system can generate sufficient forces to rapidly change the vehicle's motion. We can use this capability to effectively control the vehicle's behavior, but we must pay careful attention to ensure its reliability. The VSA system should be precisely tuned for each vehicle's characteristics in order to satisfactorily control performance without any unnecessary intervention or any excessive warnings. Usually extensive field tests are necessary to precisely tune the VSA system. This paper presents a practical method to tune the VSA system with Hardware-In-the-Loop (HIL) simulations in the final stage of its development. Due to the application of this procedure, both high control capabilities and reliability of the VSA system can be achieved.
Technical Paper

Application of Load Path Index U* for Evaluation of Sheet Steel Joint with Spot Welds

2012-04-16
2012-01-0534
An attempt was made to apply the index U* in detail analysis of load paths in structural joints under static load, using as examples coupling structures of two joined frames with hat-shaped sections, and T-beam joint structures each including spot welds, both of which are widely used in automotive body structures. U* is a load path analysis index that expresses the strength of connection between load points and arbitrary points on a structure. It was possible to identify areas making up load paths by means of the magnitude of U* values, and to clarify the areas that should be coupled in order to achieve effective load transfer to contiguous members. In addition, because it is possible to determine whether or not each section of a structure possesses the potential for load transfer using U* analysis, the research also demonstrated that U* could be used as an indicator of joint structures providing efficient load transfer.
Technical Paper

Application of Road Load Prediction Technique for Suspension Durability Input Condition

2014-04-01
2014-01-0863
The aim discussed in this paper is to show a technique to predict loads input to the wheels, essential to determining input conditions for evaluation of suspension durability, by means of full vehicle simulations using multi body analysis software Adams/Car. In this process, model environments were built to enable reproduction of driving modes, and a method of reproducing the set-up conditions of a durability test vehicle was developed. As the result of verification of the accuracy of the simulations in the target driving modes, good correlation for waveforms can be confirmed. And also confirm a good correlation in relation to changes of input load due to changes in suspension specifications.
Technical Paper

Application of the Modal Compliance Technique to a Vehicle Body in White

2007-05-15
2007-01-2355
This paper describes the application of the modal compliance method to a complex structure such as a vehicle body in white, and the extension of the method from normal modes to the complex modes of a complete vehicle. In addition to the usual bending and torsion calculations, the paper also describes the application of the method to less usual tests such as second torsion, match-boxing and breathing. We also show how the method can be used to investigate the distribution of compliance throughout the structure.
X