Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

1-D Simulation Model Developed for a General Purpose Engine

2016-11-08
2016-32-0030
In recent years, improvements in the fuel economy and exhaust emission performance of internal combustion engines have been increasingly required by regulatory agencies. One of the salient concerns regarding general purpose engines is the larger amount of CO emissions with which they are associated, compared with CO emissions from automobile engines. To reduce CO and other exhaust emissions while maintaining high fuel efficiency, the optimization of total engine system, including various design parameters, is essential. In the engine system optimization process, cycle simulation using 0-D and 1-D engine models are highly useful. To define an optimum design, the model used for the cycle simulation must be capable of predicting the effects of various parameters on the engine performance. In this study, a model for predicting the performance of a general purpose SI (Spark Ignited) engine is developed based on the commercially available engine simulation software, GT-POWER.
Technical Paper

A High Power, Wide Torque Range, Efficient Engine with a Newly Developed Variablea-Valve-Lift and -Timing Mechanism

1989-02-01
890675
A variable valving system was developed. This system has two cam profiles, one for low speed and one for high speed. A 1.2-litre DOHC experimental engine using this system was made and mounted in the body of a 2-1itre class passenger car. Test results of this car were compared to those of the same car with its original engine. The test car showed better results in every area of driving performance, in mode-fuel-econorny and in noise tests. This paper presents the mechanism, operation and test results of this variable valving system, the 1.2-litre experimental engine and this passenger car. THE PERFORMANCE AND EFFICIENCY of the passenger car gasoline engine have been greatly improved: primarily as a response to exhaust-gas emission regulations and the oil crises. These improvements have been achieved mainly through the development of control technologies to optimize many parameters such as ignition timing and air fuel ratio precisely according to driving conditions.
Technical Paper

A Quick Warm-Up System During Engine Start-Up Period Using Adaptive Control of Intake Air and Ignition Timing

2000-03-06
2000-01-0551
Early activation of catalyst by quickly raising the temperature of the catalyst is effective in reducing exhaust gas during cold starts. One such technique of early activation of the catalyst by raising the exhaust temperature through substantial retardation of the ignition timing is well known. The present research focuses on the realization of quick warm-up of the catalyst by using a method in which the engine is fed with a large volume of air by feedforward control and the engine speed is controlled by retarding the ignition timing. In addition, an intake air flow control method that comprises a flow rate correction using an adaptive sliding mode controller and learning of flow rate correction coefficient has been devised to prevent control degradation because of variation in the flow rate or aging of the air device. The paper describes the methods and techniques involed in the implementation of a quick warm-up system with improved adaptability.
Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Technical Paper

Control Device of Electronically Controlled Fuel Injection System of Air-cooled Engines for Small Motorcycles

2004-03-08
2004-01-0901
In conventional electronically controlled fuel injection systems, when the battery is inadequately charged, the small amount of electric power generated from the alternator by the kick starter operation is consumed by all electrical loads including the battery. This causes a voltage drop, hence the fuel injection system does not function due to a power shortage. To eliminate the power shortage, an installed relay circuit opens all electric loads other than the fuel injection system. This allows the fuel injection system to use all the electric power generated by the kick starter operation aided through using an additionally incorporated condenser. This type of electric power control system has been incorporated into the ECU. Thus, the control system has been realized that permits starting of an engine by using the kick-starter even when the battery is completely discharged.
Technical Paper

Development of a New 1.5L I4 Turbocharged Gasoline Direct Injection Engine

2016-04-05
2016-01-1020
A 1.5 L downsizing turbocharged engine was developed to achieve both driving and environmental performance. The engine is intended to replace 1.8 - 2.4 L class NA engines. In downsizing turbocharged engines, mixture homogeneity is important for suppressing knocking and emission reduction. Particularly under high load, creating rapid combustion and a homogeneous mixture are key technologies. The authors used a long-stroke direct injection engine, which has outstanding rapid combustion and thermal efficiency, as a base engine meeting these requirements. They combined this with a high-tumble port and shallow-dish piston intended to support tumble flow. The combination enhanced flow within the cylinder. The combustion system was built to include a sodium-filled exhaust valve to reduce knocking and a multi-hole injector (six holes) for mixture homogeneity and to reduce the fuel wall wetting.
Technical Paper

Diesel CAI Combustion in Uniflow Scavenging 2-Stroke Engine Provided with Port Fuel Injection Device

2018-10-30
2018-32-0015
We studied a simple and cost effective controlled auto ignition (CAI) combustion engine in order to achieve simultaneous reduction of NOx and soot, which are issues in diffusion combustion. The engine type was a uniflow scavenging 2-stroke engine, and the fuel used was diesel, as is common in diesel engines. We examined the position of the injector that effectively forms the premixture and realized stable operation with diesel fuel by the low pressure fuel injection device for port fuel injection (PFI), and it was found that the CAI combustion ignition timing can be controlled through setting the air/fuel ratio that obtains the optimal ignition timing per operation conditions.
Technical Paper

Effect of Mixture Stratification and Fuel Reactivity on Dual-Fuel Compression Ignition Combustion Process for SI-Based Engine

2016-10-17
2016-01-2304
Compression ignition combustion with a lean mixture has high potential in terms of high theoretical thermal efficiency and low NOx emission characteristics due to low combustion temperatures. In particular, a Dual-Fuel concept is proposed to achieve high ignition timing controllability and an extended operation range. This concept controls ignition timing by adjusting the fraction of two fuels with different ignition characteristics. However, a rapid combustion process after initial ignition cannot be avoided due to the homogenous nature of the fuel mixture, because the combustion process depends entirely on the high reaction rate of thermal ignition. In this study, the effect of mixture stratification in the cylinder on the combustion process after ignition based on the Dual-Fuel concept was investigated. Port injection of one fuel creates the homogeneous mixture, while direct injection of the other fuel prepares a stratified mixture in the cylinder at the compression stroke.
Technical Paper

Effects of Hydrogen Addition to Intake Mixture on Cyclic Variation of Diesel Engine

2011-08-30
2011-01-1964
The present study experimentally investigated cyclic variation of combustion characteristics of a diesel engine with hydrogen added to the intake air in detail. As the result, there were three ignition modes: (1) hydrogen ignition mode, (2) hydrogen-assisted ignition mode, and (3) diesel-fuel ignition mode. Ignition timing fluctuated from cycle to cycle in each ignition mode and between one ignition mode and another mode. As the coolant temperature was increased, the number of cycles in diesel-fuel ignition mode decreased, and indicated thermal efficiency and cyclic variation was improved. In the case with the blow-by gas introduced to intake port, preflame reaction of blow-by gas first occurred, ignited hydrogen, and then diesel-fuel was ignited by hydrogen combustion in hydrogen ignition mode and hydrogen-assisted ignition mode.
Technical Paper

Engine Knock Toughness Improvement Through Water Jacket Optimization

2003-10-27
2003-01-3259
Improvement of engine cycle thermal efficiency is an effective way to increase engine torque and to reduce fuel consumption simultaneously. However, the extent of the improvement is limited by engine knock, which is more evident at low engine speeds when combustion flame propagation is relatively slow. To prevent engine damage due to knock, the spark ignition timing of a gasoline engine is usually controlled by a knock sensor. Therefore, an engine's ignition timing cannot be set freely to achieve best engine performance and fuel economy. Whether ignition timings for a multi-cylinder engine are the same or can be set differently for each cylinder, it is not desirable for each cylinder has big deviation from the median with respect to knock tendency. It is apparent that effective measures to improve engine knock toughness should address both uniformity of all cylinders of a multi-cylinder engine and improvement of median knock toughness.
Technical Paper

Flame Propagation into Lean Region in Stratified Methane Mixture

2002-10-21
2002-01-2693
Combustion characteristics of the transient methane jet were investigated using a constant volume bomb. The amount of unburned fuel increased as the ignition timing was delayed. Bulk quenching was found to occur in the trailing part of the jet due to the low fuel concentration. Then the characteristics of the flame propagation into the lean region was investigated. This is accomplished by the injection of methane into the lean methane-air mixture charge, whose equivalence ratio was less than the lower flammability limit of the premixed methane-air mixture. The effects of methane concentration of the charge on the flame propagation was examined. The flame generated in the fuel jet propagated into the lean mixture charge. Though the flame propagated in the lean mixture charge for a longer duration with the increase of its methane concentration, it was quenched in the charge before it reached the chamber wall.
Technical Paper

Ignition and Combustion Simulation in HCCI Engines

2006-04-03
2006-01-1522
Combustion simulation is an effective tool in overcoming the issues associated with gasoline HCCI engines, controlling ignition timing and extending the operating range. The research discussed in this paper commenced by optimizing the reaction mechanism from the perspective of ignition delay using the genetic algorithm (GA) method. Simulations employing the optimized reaction mechanism were then able to more accurately reproduce the ignition timing of iso-octane and primary reference fuels (PRF). Ignition times obtained from simulations showed excellent correlation with ignition times measured using these fuels in shock tube experiments, and in engines with both homogeneous and non-homogeneous fuel distributions. The use of the PRF mechanism for gasoline with an equivalent octane number enables excellent reproduction of ignition timing even when EGR is employed.
Technical Paper

MBT Control Utilizing Crank Angle of Maximum Combustion Pressure

1989-02-01
890759
For better power output and fuel economy of a four stroke cycle ignition engine, the ignition timing should preferably be set to the minimum spark advance for best torque (MBT). It is found that when the ignition timing is set MBT, the crank angle of the maximum combustion pressure (θpmax) usually lies between 12 and 14 deg after top dead center (ATDC) regardless of any engine specifications or operating factors. Therefore, the ignition timing can be controlled to be MBT by using the θpmax. This paper describes the relationship between the θpmax and MBT by both experimental results and numerical calculations, and MBT control system utilizing θpmax. And the test results by using this system are also described.
Technical Paper

Management System for Continuously Variable Valve Lift Gasoline Engine

2007-04-16
2007-01-1200
A continuously variable valve lift gasoline engine can improve fuel consumption by reducing pumping loss and increase maximum torque by optimizing valve lift and cam phase according to engine speed. In this research, a new control system to simultaneously ensure good driveability and low emissions was developed for this low fuel consumption, high power engine. New suction air management through a master-slave control made it possible to achieve low fuel consumption and good driveability. To regulate the idle speed, a new controller featuring a two-degree-of-freedom sliding-mode algorithm with cooperative control was designed. This controller can improve the stability of idle speed and achieve the idle operation with a lower engine speed. To reduce emissions during cold start condition, an ignition timing control was developed that combine I-P control with a sliding mode control algorithm.
Technical Paper

Numerical Simulations of Mixture Formation in Combustion Chambers of Lean-Burn Natural Gas Engines Incorporating a Sub-Chamber

2017-10-08
2017-01-2280
The aim of this study is to clarify the mixture formation in the combustion chamber of our developed natural gas engine incorporating the sub-chamber injection system, in which natural gas is directly injected into a combustion sub-chamber in order to completely separate rich mixture in the sub-chamber, suitable for ignition, from ultra-lean mixture in the main chamber. Mixture distributions in chambers with and without sub-chamber were numerically simulated at a variety of operating conditions. The commercial software of Fluent 16.0 was used to conduct simulations based on Reynolds averaged Navier-Stokes equations in an axial 2 dimensional numerical domain considering movements of piston. Non-reactive flow in the combustion chamber was simulated before the ignition timing at an engine speed of 2000 rpm. The turbulence model employed here is standard k-ε model. Air-fuel ratio is set with a lean condition of 30.
Technical Paper

Research on Combustion Noise for Controlled Auto Ignition Engine Fueled with Natural Gas Effect of Stroke Bore Ratio and Ignition Timing

2016-11-08
2016-32-0044
One of the issues involved in compression ignition combustion is the increase in combustion noise from engine mechanical systems caused by rapid combustion. When the fuel used is natural gas, with its high ignition temperature, the compression is increased relative to gasoline, so that combustion becomes even more rapid. The present research pursues the issue of noise by clarifying the distinctive features of combustion noise through tests focused on the two topics of stroke-bore ratio (S/B ratio) and ignition timing for engine structures deformation mode. From these results, we verified combustion noise trend and occurrence factor.
Technical Paper

Spark Plug Voltage Analysis for Monitoring Combustion in an Internal Combustion Engine

1993-03-01
930461
The idea to monitor the combustion in an internal combustion engine and using the obtained data to control combustion in the engine has been around for some time now. There are two well-known methods, although in the capacity of lab experiments, which had been developed under this principle. One features the analysis of combustion pressure and the other features the analysis of ionic currents detected in the combustion gas. Although highly precise analysis can be achieved by the former, there are problems in the installation of sensors for detecting combustion pressure, also in the durability and cost of such sensors. As for the latter, there are also problems in installing sensors for detecting the ionic currents and the reliability of obtained data from such sensors is still questionable.
Technical Paper

Study on HCCI-SI Combustion Using Fuels Ethanol Containing

2007-10-29
2007-01-4051
Bio-ethanol is one of the candidates for automotive alternative fuels. For reduction of carbon dioxide emissions, it is important to investigate its optimum combustion procedure. This study has explored effect of ethanol fuels on HCCI-SI hybrid combustion using dual fuel injection (DFI). Steady and transient characteristics of the HCCI-SI hybrid combustion were evaluated using a single cylinder engine and a four-cylinder engine equipped with two port injectors and a direct injector. The experimental results indicated that DFI has the potential for optimizing ignition timing of HCCI combustion and for suppressing knock in SI combustion under fixed compression ratio. The HCCI-SI hybrid combustion using DFI achieved increasing efficiency compared to conventional SI combustion.
Technical Paper

Study on Ignition Timing Control for Diesel Engines Using In-Cylinder Pressure Sensor

2006-04-03
2006-01-0180
As technologies for simultaneously maintaining the current high thermal efficiency of diesel engines and reducing particulate matter (PM) and nitrogen oxide (NOX) emissions, many new combustion concepts have been proposed, including premixed charge compression ignition (PCCI) and low-temperature combustion[1]. However, it is well known that since such new combustion techniques precisely control combustion temperatures and local air-fuel ratios by varying the amount of air, the exhaust gas recirculation (EGR) ratio and the fuel injection timing, they have the issues of being less stable than conventional combustion techniques and of performance that is subject to variance in the fuel and driving conditions. This study concerns a system that addresses these issues by detecting the ignition timing with in-cylinder pressure sensors and by controlling the fuel injection timing and the amount of EGR for optimum combustion onboard.
Technical Paper

Validation of Turbulent Combustion and Knocking Simulation in Spark-Ignition Engines Using Reduced Chemical Kinetics

2015-04-14
2015-01-0750
Downsizing or higher compression ratio of SI engines is an appropriate way to achieve considerable improvements of part load fuel efficiency. As the compression ratio directly impacts the engine cycle thermal efficiency, it is important to increase the compression ratio in order to reduce the specific fuel consumption. However, when operating a highly boosted / downsized SI engine at full load, the actual combustion process deviates strongly from the ideal Otto cycle due to the increased effective loads requiring ignition timing delay to suppress abnormal combustion phenomena such as engine knocking. This means that for an optimal design of an SI engine between balances must be found between part load and full load operation. If the knocking characteristic can be accurately predicted beforehand when designing the combustion chamber, a reduction of design time and /or an increase in development efficiency would be possible.
X