Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1-D Simulation Model Developed for a General Purpose Engine

2016-11-08
2016-32-0030
In recent years, improvements in the fuel economy and exhaust emission performance of internal combustion engines have been increasingly required by regulatory agencies. One of the salient concerns regarding general purpose engines is the larger amount of CO emissions with which they are associated, compared with CO emissions from automobile engines. To reduce CO and other exhaust emissions while maintaining high fuel efficiency, the optimization of total engine system, including various design parameters, is essential. In the engine system optimization process, cycle simulation using 0-D and 1-D engine models are highly useful. To define an optimum design, the model used for the cycle simulation must be capable of predicting the effects of various parameters on the engine performance. In this study, a model for predicting the performance of a general purpose SI (Spark Ignited) engine is developed based on the commercially available engine simulation software, GT-POWER.
Technical Paper

3D-PIV Measurement and Visualization of Streamlines Around a Standard SAE Vehicle Model

2011-04-12
2011-01-0161
In CFD (Computational Fluid Dynamics) verification of vehicle aerodynamics, detailed velocity measurements are required. The conventional 2D-PIV (Two Dimensional Particle Image Velocimetry) needs at least twice the number of operations to measure the three components of velocity ( u,v,w ), thus it is difficult to set up precise measurement positions. Furthermore, there are some areas where measurements are rendered impossible due to the relative position of the object and the optical system. That is why the acquisition of detailed velocity data around a vehicle has not yet been attained. In this study, a detailed velocity measurement was conducted using a 3D-PIV measurement system. The measurement target was a quarter scale SAE standard vehicle model. The wind tunnel system which was also designed for a quarter scale car model was utilized. It consisted of a moving belt and a boundary suction system.
Technical Paper

49 Development of Pb-free Free-Cutting Steel Enabling Omission of Normalizing for Crankshafts

2002-10-29
2002-32-1818
Crankshafts of motorcycles require high strength, high reliability and low manufacturing cost. Recently, a reduction of Pb content in the free-cutting steel, which is harmful substance, is required. In order to satisfy such requirements, we started the development of Pb-free free-cutting steel which simultaneously enabled the omission of the normalizing process. For the omission of normalizing process, we adjusted the content of Carbon, Manganese and Nitrogen of the steel. This developed steel can obtain adequate hardness and fine microstructure by air-cooling after forging. Pb-free free-cutting steel was developed based on Calcium-sulfur free-cutting steel. Pb free-cutting steel is excellent in cutting chips frangibility in lathe process. We thought that it was necessary that cutting chips frangibility of developed steel was equal to Pb free-cutting steel. It was found that cutting chips frangibility depend on a non-metallic inclusion's composition, shape and dispersion.
Technical Paper

A High Power, Wide Torque Range, Efficient Engine with a Newly Developed Variablea-Valve-Lift and -Timing Mechanism

1989-02-01
890675
A variable valving system was developed. This system has two cam profiles, one for low speed and one for high speed. A 1.2-litre DOHC experimental engine using this system was made and mounted in the body of a 2-1itre class passenger car. Test results of this car were compared to those of the same car with its original engine. The test car showed better results in every area of driving performance, in mode-fuel-econorny and in noise tests. This paper presents the mechanism, operation and test results of this variable valving system, the 1.2-litre experimental engine and this passenger car. THE PERFORMANCE AND EFFICIENCY of the passenger car gasoline engine have been greatly improved: primarily as a response to exhaust-gas emission regulations and the oil crises. These improvements have been achieved mainly through the development of control technologies to optimize many parameters such as ignition timing and air fuel ratio precisely according to driving conditions.
Journal Article

A Quantitative Safety Assessment Methodology for Safety-Critical Programmable Electronic Systems Using Fault Injection

2009-04-20
2009-01-0760
Given the increased use of programmable embedded electronic systems (PEES) in automotive applications and their vital importance, it is not only important for engineers to design PEES in such a way to meet or exceed safety requirements but also quantify how “safe” these systems are. At the University of Virginia's Center for Safety-Critical Systems, we have developed a safety quantification methodology for embedded real time safety-related systems. The goal of the safety quantification methodology is to provide a generic but rigorous and systematic way of characterizing the dependability behavior of embedded systems that is applicable to a broad range of applications from automotive to nuclear. This paper presents a quantitative safety assessment methodology for safety-critical embedded systems using fault injection (FI). This methodology has been developed, refined and applied to a number of commercial safety-grade systems in the railway, nuclear and avionics industries.
Technical Paper

A Quick Warm-Up System During Engine Start-Up Period Using Adaptive Control of Intake Air and Ignition Timing

2000-03-06
2000-01-0551
Early activation of catalyst by quickly raising the temperature of the catalyst is effective in reducing exhaust gas during cold starts. One such technique of early activation of the catalyst by raising the exhaust temperature through substantial retardation of the ignition timing is well known. The present research focuses on the realization of quick warm-up of the catalyst by using a method in which the engine is fed with a large volume of air by feedforward control and the engine speed is controlled by retarding the ignition timing. In addition, an intake air flow control method that comprises a flow rate correction using an adaptive sliding mode controller and learning of flow rate correction coefficient has been devised to prevent control degradation because of variation in the flow rate or aging of the air device. The paper describes the methods and techniques involed in the implementation of a quick warm-up system with improved adaptability.
Technical Paper

A Study of High Power Output Diesel Engine with Low Peak Cylinder Pressure

2010-04-12
2010-01-1107
This study examined a high-speed, high-powered diesel engine featuring a pent-roof combustion chamber and straight ports, with the objective of improving the specific power of the engine while minimizing any increase in the maximum cylinder pressure (Pmax). The market and contemporary society expect improvements in the driving performance of diesel-powered automobiles, and increased specific power so that engine displacement can be reduced, which will lessen CO2 emissions. When specific power is increased through conventional methods accompanied with a considerable increase in Pmax, the engine weight is increased and friction worsens. Therefore, the authors examined new technologies that would allow to minimize any increase in Pmax by raising the rated speed from the 4000 rpm of the baseline engine to 5000 rpm, while maintaining the BMEP of the baseline engine.
Technical Paper

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-04-16
2012-01-0365
Manganese oxides show high catalytic activity for CO and HC oxidation without including platinum group metals (PGM). However, there are issues with both thermal stability and resistance to sulfur poisoning. We have studied perovskite-type YMnO₃ (YMO) with the aim of simultaneously achieving both activity and durability. This paper describes the oxidation activity of PGM-free Ag/i-YMO, which is silver supported on improved-YMO (i-YMO). The Ag/i-YMO was obtained by the following two methods. First, Mn⁴+ ratio and specific surface area of YMO were increased by optimizing composition and preparation method. Second, the optimum amount of silver was supported on i-YMO. In model gas tests and engine bench tests, the Ag/i-YMO catalyst showed the same level of activity as that of the conventional Pt/γ-Al₂O₃ (Pt = 3.0 g/L). In addition, there was no degradation with respect to either heat treatment (700°C, 90 h, air) or sulfur treatment (600°C to 200°C, total 60 h, 30 ppm SO₂).
Video

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-06-18
Currently, two consolidated aftertreatment technologies are available for the reduction of NOx emissions from diesel engines: Urea SCR (Selective Catalytic Reduction) systems and LNT (Lean NOx Trap) systems. Urea SCR technology, which has been widely used for many years at stationary sources, is becoming nowadays an attractive alternative also for light-duty diesel applications. However, SCR systems are much more effective in NOx reduction efficiency at high load operating conditions than light load condition, characterized by lower exhaust gas temperatures.
Technical Paper

A System for the Modal Analysis of Exhaust Emissions from Motorcycles

1981-02-01
810297
Devices for use in control of exhaust emissions have become indispensable to motorcycles. In order to evaluate quantitatively the effect of each device, the modal analysis system has to be required. The Modal Analysis System is one that classifies any driving schedule which is used for emissions measurement into four modes: idle, acceleration, cruise, and deceleration; then measures the emissions continuously using a mini-computer which accumulates the results of the analysis by mode. Instead of CO2 tracer method, we introduced the method of diluted exhaust gas measurement. In order for the system to produce reliable measurements, the accuracy of the total installation must be ensured. This paper describes the improvements of accuracy of analysers, technique on handling delay time and the verifications on the modal analysis system.
Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Technical Paper

Advanced Hydro-Mechanical Transmission with High-Durability for Small Utility Vehicles

2001-03-05
2001-01-0876
The new automatic transmission, A-HMT (Advanced Hydro-Mechanical Transmission) has been developed for the Honda ATV (All Terrain Vehicle), which is for wide applications such as utility, recreation, etc. The A-HMT system features high performance, durability and reliability attained by improving the structures from the original hydro-mechanical automatic transmission used for the scooter called “Juno”, which Honda had produced many years ago, working on the same principle. In addition to it, by applying the electronic control system, the highly responsive driveability that suits the requirements of ATV's has been realized. The A-HMT is installed in the new 500 cm3 ATV, FOURTRAX FOREMAN RUBICON, which has been introduced in the USA market since June 2000.
Journal Article

Ag-Type PM Oxidation Catalyst with Nd Added to Increase Contact Property between PM and Catalyst

2018-04-03
2018-01-0328
Honda diesel engine vehicles that go on the market in 2018 will be equipped with a newly developed silver (Ag)-type catalyzed diesel particulate filter (cDPF). Ag has high particulate matter (PM) oxidation performance, but conventional catalyst-carrying methods cause weak contact property between PM and Ag; therefore, the newly Ag-type cDPF was developed on the concept of enhancing the property of contact between PM and the catalyst to realize contact property enhancement at the macro, meso, and nano scales. As a result, the newly developed catalyst showed an enhancement of T90 performance by a factor of approximately 2 relative to the conventional Ag-type catalyst in fresh condition. Durability in the environment of an automobile in use was examined through hydrothermal aging, lean-rich (L/R) aging, sulfur (S) poisoning, and ash deposition. The results have confirmed that hydrothermal aging is the greatest factor in deterioration.
Technical Paper

Analysis of FM Multipath Distortion using Two-Stage and MUSIC Methods

2014-04-01
2014-01-0286
Traditionally, the suitability of wireless terminals for automotive use has been evaluated by conducting repeated driving tests in actual environments. However, this method of evaluation has long presented issues, and the implementation of the method itself is today becoming increasingly challenging. A method of evaluating the suitability of terminals for onboard use by generating virtual radio wave environments on a PC has therefore been developed by applying a two-stage method to multiple-input multiple-output (MIMO)-over-the-air(OTA) evaluation. The radio wave propagation characteristics necessary for the generation of these virtual radio wave environments are set using the multiple signal classification method incorporating an RF recorder. The research discussed in this paper used these methods to analyze the effect of the multipath distortion rate on sound quality in the reception of FM broadcasts.
Technical Paper

Analysis of the Pressure Drop Increase Mechanism by Ash Accumulated of Coated GPF

2019-04-02
2019-01-0981
With accelerating exhaust gas regulations in recent years, not only CO / HC / NOx but also PN regulation represented by Euro 6 d, China 6 are getting stricter. PN reduction by engine combustion technology development also progresses, but considering RDE, PN reduction by after treatment technology is also indispensable. To reduce PN exhausted from the gasoline engine, it is effective to equip GPF with a filter structure. Considering the installation of GPF in limited space, we developed a system that so far replaces the second TWC with GPF for the TWC 2 bed system. In order to replace the second TWC with GPF, we chose the coated GPF with filtering and TWC functions. Since the initial pressure drop and the catalyst amount (purification performance) of coated GPF have a conflicting relationship, we developed the coated GPF that can achieve both the low initial pressure drop and high purification performance.
Journal Article

Anisotropic Material Damage Model of Randomly Oriented Thermoplastic Composites for Crash Simulation

2020-04-14
2020-01-1305
In this research, a material model was developed that has orthotropic properties with respect to in-plane damage to support finite element strength analysis of components manufactured from a randomly oriented long-fiber thermoplastic composite. This is a composite material with randomly oriented bundles of carbon fibers that are approximately one inch in length. A macroscopic characteristic of the material is isotropic in in-plane terms, but there are differences in the tension and compression damage properties. In consideration of these characteristics, a material model was developed in which the damage evolution rate is correlated with thermodynamic force and stress triaxiality. In-plane damage was assumed to be isotropic with respect to the elements. In order to validate this material model, the results from simulation and three-point bending tests of closed-hat-section beams were compared and found to present a close correlation.
Journal Article

Application of Electric Servo Brake System to Plug-In Hybrid Vehicle

2013-04-08
2013-01-0697
An electric servo brake system applied for use on electric vehicles was applied for use on plug-in hybrid vehicles in order to achieve fuel-savings together with good brake feel and enhanced operability for plug-in hybrid vehicles. The electric servo brake system is made up of highly accurate braking pressure control that functions cooperatively with regenerative brakes together with a structure in which pedal force is not influenced by braking pressure control. The configuration of these components enabled good braking feel even when the power train was being switched from one drive mode to another. Automated pressurization functions that are intended for plug-in hybrid vehicles and that operate with electric servo brake systems were also developed. These developed functions include stall cooperative control that functions cooperatively with the power train, regenerative coordinate adaptive cruise control, and hill-start assist.
Journal Article

Application of Engine Load Estimation Method Using Crank Angular Velocity Variation to Spark Advance Control

2014-11-11
2014-32-0065
The technology to estimate engine load using the amplitude of crankshaft angular velocity variation during a cycle, which is referred to as “Δω (delta omega)”, in a four-stroke single-cylinder gasoline engine has been established in our former studies. This study was aimed to apply this technology to the spark advance control system for small motorcycles. The cyclic variation of the Δω signal, which affects engine load detection accuracy, was a crucial issue when developing the system. To solve this issue, filtering functions that can cope with various running conditions were incorporated into the computation process that estimates engine loads from Δω signals. In addition, the system made it possible to classify engine load into two levels without a throttle sensor currently used. We have thus successfully developed the new spark advance system that is controlled in accordance with the engine speed and load.
Technical Paper

Application of Image Converter Camera to Measure Flame Propagation in S.I. Engine

1989-02-01
890322
A combustion flame visualization system, for use as an engine diagnostics tool, was developed in order to evaluate combustion chamber shapes in the development stage of mass-produced spark ignition (S.I.) engines. The system consists of an image converter camera and a computer-aided image processing system. The system is capable of high speed photography (10,000 fps) at low intensity light (1,000 cd/m2), and of real-time display of the raw images of combustion flames. By using this system, flame structure estimated from the brightness level on a photograph and direction of flame propagation in a mass-produced 4-valve engine were measured. It was observed that the difference in the structure and the propagation of the flame in the cases of 4-valve and quasi-2-valve combustion chambers, which had the same in the pressure diagram, were detected. The quasi-2-valve configuration was adopted in order to improve swirl intensity.
Technical Paper

Comparison of Three Active Chassis Control Methods for Stabilizing Yaw Moments

1994-03-01
940870
Using stabilizing yaw-moment diagrams, the authors analyzed three methods of active chassis control for their effect and effective ranges during cornering maneuvers. The following results were obtained: controlling the transverse distribution of driving and braking forces cancels the changes in a vehicle's dynamic characteristics caused by acceleration and deceleration. Controlling the distribution of roll stiffness is only effective in ranges with high lateral acceleration, and the effect varies depending on the longitudinal weight distribution. Controlling the rear wheel steering angle is most effective in a range with a small side slip angle, but this effect decreases with an increase in the angle, especially during deceleration.
X