Refine Your Search

Topic

Author

Search Results

Technical Paper

A Computer Simulation for Motorcycle Rider–Motion in Collision

2003-09-15
2003-32-0044
A computer simulation method for motorcycle rider motion in a collision on a passenger car has been developed. The computer simulation results were in two cases of collision, at 45 degree and 90 degree angles against the side of a passenger car. The simulated results were compared to the test results for validation. The simulation software of explicit finite element method (FEM) has been used, because of its capability for expressing accurate shape and deformation. The mesh size was determined with consideration for simulation accuracy and calculation time, and an FEM model of a motorcycle, an airbag, a dummy, a helmet and a passenger car were built. To shorten the calculation time, a part of the model was regarded as a rigid body and eliminated from the contact areas. As a result, highly accurate dummy posture and head velocity at the time of contact on the ground were simulated in the two cases of collision.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Statistical Tire Model Concept - Applications to Vehicle Development

2015-04-14
2015-01-1578
The tires are one of the most important parts of the vehicle chassis, as they significantly influence aspects such as vehicle's directional stability, braking performance, ride comfort, NVH, and fuel consumption. The tires are also a part whose size affects the vehicle's essential specifications such as wheelbase and track width. The size of the tires should therefore be determined in the initial stage of vehicle development, taking into account whether the size allows the vehicle to achieve the targeted overall performance. In estimations of vehicle performance, computer simulation plays more of an important role, and simulated tire models are designed to reproduce the measured tire characteristics of existing tires. But to estimate the chassis performance with various tire sizes or with tires of uncommon sizes, the prevailing modeling approach, “individual models for individual tires,” would not function well because of limited ability to expand tire models to unfamiliar sizes.
Technical Paper

Active Damping of Engine Idle Speed Oscillation by Applying Adaptive Pid Control

2001-03-05
2001-01-0261
This paper investigates the use of an adaptive proportional-integral-derivative (APID) controller to reduce a combustion engine crankshaft speed pulsation. Both computer simulations and engine test rig experiments are used to validate the proposed control scheme. The starter/alternator (S/A) is used as the actuator for engine speed control. The S/A is an induction machine. It produces a supplemental torque source to cancel out the fast engine torque variation. This machine is placed on the engine crankshaft. The impact of the slowly varying changes in engine operating conditions is accounted for by adjusting the APID controller parameters on-line. The APID control scheme tunes the PID controller parameters by using the theory of adaptive interaction. The tuning algorithm determines a set of PID parameters by minimizing an error function. The error function is a weighted combination of the plant states and the required control effort.
Technical Paper

Aging Simulation of Electric Vehicle Battery Cell Using Experimental Data

2021-04-06
2021-01-0763
The adoption of lithium-ion batteries in vehicle electrification is fast growing due to high power and energy demand on hybrid and electric vehicles. However, the battery overall performance changes with time through the vehicle life. This paper investigates the electric vehicle battery cell aging under different usages. Battery cell experimental data including open circuit voltage and internal resistance is utilized to build a typical electric vehicle model in the AVL-Cruise platform. Four driving cycles (WLTP, UDDS, HWFET, and US06) with different ambient temperatures are simulated to acquire the battery cell terminal currents. These battery cell terminal current data are inputs to the MATLAB/Simulink battery aging model. Simulation results show that battery degrades quickly in high ambient temperatures. After 15,000 hours usage in 50 degrees Celsius ambient temperature, the usable cell capacity is reduced up to 25%.
Technical Paper

Analysis of upper extremity response under side air bag loading

2001-06-04
2001-06-0016
Computer simulations, dummy experiments with a new enhanced upper extremity, and small female cadaver experiments were used to analyze the small female upper extremity response under side air bag loading. After establishing the initial position, three tests were performed with the 5th percentile female hybrid III dummy, and six experiments with small female cadaver subjects. A new 5th percentile female enhanced upper extremity was developed for the dummy experiments that included a two-axis wrist load cell in addition to the existing six-axis load cells in both the forearm and humerus. Forearm pronation was also included in the new dummy upper extremity to increase the biofidelity of the interaction with the handgrip. Instrumentation for both the cadaver and dummy tests included accelerometers and magnetohydrodynamic angular rate sensors on the forearm, humerus, upper and lower spine.
Technical Paper

Characterization and Comparison of Two Hybrid Electric Vehicles (HEVs) - Honda Insight and Toyota Prius

2001-03-05
2001-01-1335
Two limited-production hybrid electric vehicles (HEVs) - a 1988 Japanese model Toyota Prius and a 2000 Honda Insight - were tested at Argonne National Laboratory to collect data from vehicle component and systems operation. The test data are used to analyze operation and efficiency and to help validate computer simulation models. Both HEVs have FTP fuel economy greater than 45 miles per gallon and also have attributes very similar to those of conventional gasoline vehicles, even though each HEV has a unique powertrain configuration and operation control strategy. The designs and characteristics of these vehicles are of interest because they represent production technology with all the compromises for production included. This paper will explore both designs, their control strategies, and under what conditions high fuel economy was achieved.
Technical Paper

Characterization and Simulation of a Unit Injector

1975-02-01
750773
The characteristics of the diesel engine unit injector were studied both theoretically and experimentally. The transient fuel pressure in the unit injector was indirectly measured by using strain gauges placed in different locations on the drive train, between the cam and plunger. The events which take place during the injection process were analyzed and the effects of several design and operating variables on the different injection parameters were determined. Computer simulation showed a fairly good agreement between computed and experimental results.
Technical Paper

Computational Investigation of Hydrogen-Air Mixing in a Large-Bore Locomotive Dual Fuel Engine

2024-04-09
2024-01-2694
The internal combustion engine (ICE) has long dominated the heavy-duty sector by using liquid fossil fuels such as diesel but global commitments by countries and OEMs to reduce lifecycle carbon dioxide (CO2) emissions has garnered interest in alternative fuels like hydrogen. Hydrogen is a unique gaseous fuel that contains zero carbon atoms and has desired thermodynamic properties of high energy density per unit mass and high flame speeds. However, there are challenges related to its adoption to the heavy-duty sector as a drop-in fuel replacement for compression ignition (CI) diesel combustion given its high autoignition resistance. To overcome this fundamental barrier, engine manufacturers are exploring dual fuel combustion engines by substituting a fraction of the diesel fuel with hydrogen which enables fuel flexibility when there is no infrastructure and retrofittability to existing platforms.
Technical Paper

Computer simulation process for pedestrian protection structures

2000-06-12
2000-05-0222
Research into pedestrian protection has been carried out since the 1960s, in recent years there have been proposals in Europe to legislate requirements in this area and therefore the research is becoming more focused. In the draft regulation, impactor tests have been proposed as a method for evaluating the impact caused by vehicles'' body for pedestrians. This paper introduces impactor model and actual vehicle analysis as a means for simulating impactor testing. Three types of impactors for vehicle tests are presented. It is necessary that the models are first matched with the results of the calibration tests, then matched with the results of the tests on actual vehicles.
Technical Paper

Defining the Boundary Conditions of the CFR Engine under MON Conditions, and Evaluating Chemical Kinetic Predictions at RON and MON for PRFs

2021-04-06
2021-01-0469
Expanding upon the authors’ previous work which utilized a GT-Power model of the Cooperative Fuels Research (CFR) engine under Research Octane Number (RON) conditions, this work defines the boundary conditions of the CFR engine under Motored Octane Number (MON) test conditions. The GT-Power model was validated against experimental CFR engine data for primary reference fuel (PRF) blends between 60 and 100 under standard MON conditions, defining the full range of interest of MON for gasoline-type fuels. The CFR engine model utilizes a predictive turbulent flame propagation sub-model, and a chemical kinetic solver for the end-gas chemistry. The validation was performed simultaneously for thermodynamic and chemical kinetic parameters to match in-cylinder pressure conditions, burn rate, and knock point prediction with experimental data, requiring only minor modifications to the flame propagation model from previous model iterations.
Technical Paper

Development and Validation of the Finite Element Model for the Human Lower Limb of Pedestrians

2000-11-01
2000-01-SC22
An impact test procedure with a legform addressing lower limb injuries in car-pedestrian accidents has been proposed by EEVC/WG17. Although a high frequency of lower limb fractures is observed in recent accident data, this test procedure assesses knee injuries with a focus on trauma to the ligamentous structures. The goal of this study is to establish a methodology to understand injury mechanisms of both ligamentous damages and bone fractures in car-pedestrian accidents. A finite element (FE) model of the human lower limb was developed using PAM-CRASH™. The commercially available H-Dummy™ lower limb model developed by Nihon ESI for a seated position was modified to represent the standing posture of pedestrians. Mechanical properties for both bony structures and knee ligaments were determined from our extensive literature survey, and were carefully implemented in the model considering their strain rate dependency in order to simulate the dynamic response of the lower limb accurately.
Journal Article

Development of Estimation for Strain in Damages of Motorcycle Engine Parts When Tipped Over from Stationary State

2013-10-15
2013-32-9096
In this research, a simulation method was developed in which it was able to estimate, in the early stage of design, the strains that potentially lead to damages to motorcycle engine parts when tipped over from a stationary state. Splitting a series of phenomena from the start of tilting of motorcycle from the upright position up to the end of collision of engine parts after the contact on the ground to two groups by before and after the contact of engine parts on the ground, we applied the multi body dynamics analysis to the first group, and the elastro-plastic FEM analysis to the latter one. In the computer simulation of collision using the elastro-plastic FEM analysis, we minimized the FEM models from the entire motorcycle models and treated others as a solid model to shorten the computation period. It is also realized that the strains occurring in the engine parts can be simulated by considering only the mass of the parts which are rigidly mounted on the engine.
Technical Paper

Development of Evaluation Method for Low-Cycle Fatigue Breakdown on HSDI Diesel Cylinder Head

2010-04-12
2010-01-0695
With a growing demand for high-power diesel engines, a key issue in engine development is to create efficient methods for developing highly durable cylinder heads, without having to repeat trial-and-error testing. Especially, it was difficult to accurately predict the occurrence and origin of cracks on the surfaces of cylinder heads in hot and cold cycle engine operation. This paper describes a thermal fatigue evaluation method developed by analyzing areas around the glow plug hole where cracks often occur during hot and cold cycle engine operation. To reveal the conditions of edges from which cracks were formed under engine durability tests, we used two procedures. One was estimating local temperature of edge areas based on material hardness determination, in order to compensate for the accuracy of the thermal analysis. The other was analyzing the strain amplitudes on the cylinder head surface using computer simulation.
Journal Article

Effects of Cavitation and Hydraulic Flip in 3-Hole GDI Injectors

2017-03-28
2017-01-0848
The performance of Gasoline Direct Injection (GDI) engines is governed by multiple physical processes such as the internal nozzle flow and the mixing of the liquid stream with the gaseous ambient environment. A detailed knowledge of these processes even for complex injectors is very important for improving the design and performance of combustion engines all the way to pollutant formation and emissions. However, many processes are still not completely understood, which is partly caused by their restricted experimental accessibility. Thus, high-fidelity simulations can be helpful to obtain further understanding of GDI injectors. In this work, advanced simulation and experimental methods are combined in order to study the spray characteristics of two different 3-hole GDI injectors.
Journal Article

Field Validation of the MC Default Fill Hydrogen Fueling Protocol

2015-04-14
2015-01-1177
Appendix H of the SAE J2601 standard defines a development hydrogen fueling protocol named the MC Default Fill, which builds upon the foundation of the table based protocol, utilizing the same assumptions, boundary conditions, and process limits as the current standard. The MC Default Fill facilitates the following beyond the table based protocol: 1) the potential to provide faster, more consistent fueling times for fuel cell electric vehicle customers, and 2) the ability to continuously and dynamically adjust to a wide range of dispenser fuel delivery temperatures, allowing for more flexibility in station design. Computer simulations and laboratory bench tests were previously conducted and documented, validating the function and operation of the protocol.
Journal Article

Fretting Analysis of an Engine Bearing Cap Using Computer Simulation

2016-04-05
2016-01-1083
The independent bearing cap is a cylinder block bearing structure that has high mass reduction effects. In general, this structure has low fastening stiffness compared to the rudder block structure. Furthermore, when using combination of different materials small sliding occurs at the mating surface, and fretting fatigue sometimes occurs at lower area than the material strength limit. Fretting fatigue was previously predicted using CAE, but there were issues with establishing a correlation with the actual engine under complex conditions, and the judgment criteria were not clear, so accurate prediction was a challenge. This paper reports on a new CAE-based prediction method to predict the fretting damage occurring on the bearing cap mating surface in an aluminum material cylinder block. First of all, condition a fretting fatigue test was performed with test pieces, and identification of CAE was performed for the strain and sliding amount.
Journal Article

High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector

2017-03-28
2017-01-0824
Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. The pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offs in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution.
Technical Paper

Identification and Characterization of Steady Spray Conditions in Convergent, Single-Hole Diesel Injectors

2019-04-02
2019-01-0281
Reduced-order models typically assume that the flow through the injector orifice is quasi-steady. The current study investigates to what extent this assumption is true and what factors may induce large-scale variations. Experimental data were collected from a single-hole metal injector with a smoothly converging hole and from a transparent facsimile. Gas, likely indicating cavitation, was observed in the nozzles. Surface roughness was a potential cause for the cavitation. Computations were employed using two engineering-level Computational Fluid Dynamics (CFD) codes that considered the possibility of cavitation. Neither computational model included these small surface features, and so did not predict internal cavitation. At steady state, it was found that initial conditions were of little consequence, even if they included bubbles within the sac. They however did modify the initial rate of injection by a few microseconds.
Technical Paper

Impact of Advanced Technologies on Energy Consumption of Advanced Electrified Medium-Duty Vehicles

2024-04-09
2024-01-2453
The National Highway Traffic Safety Administration (NHTSA) has been leading U.S. efforts related to the rulemaking process for Corporate Average Fuel Economy (CAFE) standards. Argonne National Laboratory, a U.S. Department of Energy (DOE) national laboratory, has developed a full-vehicle simulation tool called Autonomie that has become one of the industry standard tools for analyzing vehicle performance, energy consumption, and technology effectiveness. Through an Interagency Agreement, the DOE Argonne Site Office and Argonne National Laboratory have been tasked with conducting full vehicle simulation to support NHTSA CAFE rulemaking. This paper presents an innovative approach focused on large-scale simulation processes spanning standard regulatory driving cycles, diverse vehicle classes, and various timeframes. A key element of this approach is Autonomie’s capacity to integrate advanced engine technologies tailored to specific vehicle classes and powertrains.
X