Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Composite AC-to-DC Power Converters for More Electric Architectures

2014-09-16
2014-01-2207
This paper presents a novel method and system for an electric power alternating-current (AC)-to-direct-current (DC) converter employing composite technology. The term composite entails utilization of more than one type of conversion operating in parallel. In addition, background information for the prior art, based on conventional autotransformer rectifier units (ATRUs), and active converters are discussed. The major requirements of AC-to-DC converters from both functional and protection perspectives are provided. The concept of the new approach is defined. Comparative analysis between the new and old methods is documented. The performance features and technical details of the system parameters with respect to AC-to-DC converter system requirements are presented and discussed. Analysis, simulation results, and test data are included. Finally, the advantages of this technology, which nearly doubles power density compared to the state-of-the-art, are summarized and a conclusion included.
Technical Paper

Physiological Effects of A Mechanical Counter Pressure Glove

2001-07-09
2001-01-2165
The first concept and early experiments of a Mechanical Counter Pressure (MCP) spacesuit were published by Webb in the late 1960’s. MCP provides an alternative approach to the conventional full pressure suit that bears some potential advantages, such as increased mobility, dexterity, and tactility. The presented ongoing research provides a thorough investigation of the physiological effect of mechanical counter pressure applied onto the human skin. Preliminary results are presented from glovebox testing with an existing MCP glove. The data indicates that properly applied mechanical counter pressure greatly reduces the effect of low-pressure exposure, which makes MCP a viable technology for spacesuit gloves.
Technical Paper

Physiological Effects of Underpressure and Overpressure in a Study of Mechanical Counter Pressure Suits

2002-07-15
2002-01-2317
The first concept and early experiments of a Mechanical Counter Pressure (MCP) spacesuit were published by Webb in the late 1960's. MCP provides an alternative approach to the conventional full pressure suit that bears some significant advantages, such as increased mobility, dexterity, and tactility. The presented ongoing research provides a thorough investigation of the physiological effect of mechanical counter pressure applied onto the human skin. In this study, we investigated local microcirculatory effects produced with negative and positive ambient pressure on a bare arm, and with a MCP glove and sleeve. The data indicates that the MCP glove and sleeve effectively counteracted the adverse effects of negative environmental pressure.
Technical Paper

Physiological Limits of Underpressure and Overpressure for Mechanical Counter Pressure Suits

2003-07-07
2003-01-2444
The first concept and early experiments of a mechanical counter pressure (MCP) spacesuit were published by Webb in the late 1960's. MCP provides an alternative approach to the conventional full pressure suit that bears some significant advantages, such as increased mobility, dexterity, and tactility. The presented ongoing research provides a thorough investigation of the physiological effect of mechanical counter pressure applied onto the human skin. In this study, we investigated local microcirculatory effects produced with negative and positive ambient pressure on the lower body as a preliminary study for a lower body garment. The data indicates that the positive pressure was less tolerable than negative pressure. Lower body negative and positive pressure cause various responses in skin blood flow due to not only blood shifts but also direct exposure to pressure differentials.
Technical Paper

The Quest for Oil-Free Gas Turbine Engines

2006-11-07
2006-01-3055
Since the 1960s, aerospace research and development (R&D) has been on a quest to eliminate oil lubrication systems from gas turbine engines. Beginning with small solar power dynamic “engines” for space applications, U.S. Government and industry have invested millions of dollars to mature this technology for incorporation into modern aircraft propulsion engines. This paper traces the evolution of oil-free rotor support systems that have actually been tested in advanced demonstrators, and the technology that enables this revolutionary engine configuration. However, this technology has yet to be fielded in aerospace products. The key factors of 45 years of Government and industry R&D and a vision to mature oil-free gas turbine engines are presented herein.
Technical Paper

Usage of MTBF for Exposure Times of Undetected Faults in Safety Assessments

2007-09-17
2007-01-3831
Many of the certification regulations in 14 CFR Part 25 are by design, broad and as such, can be subject to large differences in the interpretation of what constitutes adequate compliance. Advisory Circulars (AC's) were developed for many of the regulations to assist industry, as well as certification personnel, with what is considered an acceptable, but not the only means, of compliance. However, there are many regulations where no advisory material is available. In these cases, the “acceptable means” of compliance can vary to a greater degree among the various aircraft certification offices. This difficulty is aggravated as new applicants and regulatory personnel enter the certification field. Recent discussions and interpretations on the usage of an avionic unit's mean time between failure or MTBF for its detectable faults as the basic repair rate for undetected or latent faults, is a subject area where no significant advisory material exists.
X