Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Benchmark Test for Springback: Experimental Procedures and Results of a Slit-Ring Test

2005-04-11
2005-01-0083
Experimental procedures and results of a benchmark test for springback are reported and a complete suite of obtained data is provided for the validation of forming and springback simulation software. The test is usually referred as the Slit-Ring test where a cylindrical cup is first formed by deep drawing and then a ring is cut from the mid-section of the cup. The opening of the ring upon slitting releases the residual stresses in the formed cup and provides a valuable set of easy-to-measure, easy-to-characterize springback data. The test represents a realistic deep draw stamping operation with stretching and bending deformation, and is highly repeatable in a laboratory environment. In this study, six different automotive materials are evaluated.
Technical Paper

A Comparative Study of Dent Resistance Incorporating Forming Effects

2005-04-11
2005-01-0089
Dent resistance is an important attribute in the automotive panel design, and the ability to accurately predict a panel's dentability requires careful considerations of sheet metal properties, including property changes from stamping process. The material is often work-hardened significantly during forming, and its thickness is reduced somewhat. With increased demand for weight reduction, vehicle designers are seriously pushing to use thinner-gauged advanced high-strength steels (AHSS) as outer body panels such as fenders, hoods and decklids, with the expectation that its higher strength will offset reduced thickness in its dentability. A comparative study is conducted in this paper for a BH210 steel fender as baseline design and thinner DP500 steel as the new design.
Journal Article

A Comparison of the Behaviors of Steel and GFRP Hat-Section Components under Axial Quasi-Static and Impact Loading

2015-04-14
2015-01-1482
Hat-sections, single and double, made of steel are frequently encountered in automotive body structural components. These components play a significant role in terms of impact energy absorption during vehicle crashes thereby protecting occupants of vehicles from severe injury. However, with the need for higher fuel economy and for compliance to stringent emission norms, auto manufacturers are looking for means to continually reduce vehicle body weight either by employing lighter materials like aluminum and fiber-reinforced plastics, or by using higher strength steel with reduced gages, or by combinations of these approaches. Unlike steel hat-sections which have been extensively reported in published literature, the axial crushing behavior of hat-sections made of fiber-reinforced composites may not have been adequately probed.
Technical Paper

A Comprehensive Study of Door Slam

2004-03-08
2004-01-0161
As part of an ongoing technical collaboration between Ford and Rouge Steel Company, a comprehensive study of door slam event was undertaken. The experimental phase of the project involved measurements of accelerations at eight locations on the outer panel and strains on six locations of the inner panel. Although slam tests were conducted with window up and window down, results of only one test is presented in this paper. The CAE phase of the project involved the development of suitable “math” model of the door assembly and analysis methodology to capture the dynamics of the event. The predictability of the CAE method is examined through detailed comparison of accelerations and strains. While excellent agreement between CAE and test results of accelerations on the outer panel is obtained, the analysis predicts higher strains on the inner panel than the test. In addition, the tendency of outer panel to elastically buckle is examined.
Technical Paper

A Development Procedure to Improve the Acoustical Performance of a Dash System

2005-05-16
2005-01-2515
This paper discusses a development procedure that was used to evaluate the acoustical performance of one type of dashpanel construction over another type for a given application. Two very different constructions of dashpanels, one made out of plain steel and one made out of laminated steel, were studied under a series of different test conditions to understand which one performs better, and then to evaluate how to improve the overall performance of the inferior dashpanel for a given application. The poorly performing dashpanel was extensively tested with dashmat and different passthroughs to understand the acoustic strength of different passthroughs, to understand how passthroughs affect the overall performance of the dash system, and subsequently to understand how the performance can be improved by improving one of the passthroughs.
Technical Paper

A Method of Evaluating the Joint Effectiveness on Contribution to Global Stiffness and NVH Performance of Vehicles

2017-03-28
2017-01-0376
While Advanced High Strength Steels (AHSS) and the next generation AHSS grades offer improved crash safety and reduced weight for vehicles, the global stiffness and NVH performance are often compromised due to reduced material thickness. This paper discusses an advanced method of evaluating the joint effectiveness on contribution to global stiffness and NVH performance of vehicles. A stiffness contribution ratio is proposed initiatively in this research, which evaluates the current contribution of the joints to the global stiffness and NVH performance of vehicles. Another parameter, joint effectiveness factor, has been used to study the potential of each joint on enhancing the global stiffness. The critical joints to enhance the vehicle stiffness and NVH performance can be identified based on above two parameters, and design changes be made to those critical joints to improve the vehicle performance.
Technical Paper

A Simplified Method to Make Temperature Measurements of a Metal Surface using the Surface as One Component of Thermocouple

2008-04-14
2008-01-0918
Instrumentation of an exhaust system to measure surface temperature at multiple locations usually involves welding independent thermocouples to the surface of the system. This report describes a new type of thermocouple fabricated to measure temperature at a point or temperature difference between points on a metallic object utilizing the metal as one component of the new thermocouple. AISI 316 stainless steel is used in the current study to represent automotive exhaust pipe. The other component of the thermocouple is Nickel-Chromium (Chromel, Chromega), one of the two metals used in type K thermocouples, which are generally used for exhaust temperature measurements during emission tests. Use of the new thermocouple is contingent upon an accurate calibration of its response to changes in temperature.
Technical Paper

A Thermoviscoplastic FE Model for the Strain Prediction in High Temperature, Thermal Cycling Applications for Silicon Molybdenum Nodular Cast Iron

1998-02-23
980697
The design of components for high temperature, thermal cycling situations has traditionally been a challenging problem because the analysis must compensate for the non-linear behavior of the material. One example for automotive applications is the exhaust manifold, where temperatures may reach 900°C during thermal cycling. Fatigue failure and excessive deformation of these components must be analyzed with thermoviscoplastic models. A Finite Element (FE) model is developed to simulate the material behavior at high temperature, thermal cycling conditions. A specimen of Silicon Molybdenum Nodular Cast Iron (4% Si, 0.8% Mo) is cycled between maximum temperatures of 500°C and 960°C while the stress is measured with respect to time. The model predictions for stress are compared to the experimental results for two rates of thermal cycling. The analysis is conducted with and without creep effects to understand its contribution to the overall strain.
Technical Paper

Advanced High Strength Steels for Chassis Structures

2008-04-14
2008-01-0854
Even though the use of AHSS such as DP590 for body structure applications is becoming relatively common among automobile manufacturers, application of AHSS for chassis structures is relatively new. Chassis structures such as frames and sub-frames typically use hot rolled steel grades in the yield strength range of 220 MPa to 250 MPa. For body-on-frame vehicles, the primary load carrying and energy absorbing structure is the frame. Therefore, hot rolled AHSS such as HR DP590 would be key enablers for weight reduction and strength enhancement of these structures. This paper presents a case for developing AHSS grades for chassis structures, some of the challenges for implementing them, and related work done at Ford Motor Company.
Technical Paper

Aluminum Vehicle Side Impact Design, Test and CAE

2002-03-04
2002-01-0249
Ford designed and built a midsize family sedan for the PNGV (Partnership for a New Generation of Vehicle). The side impact performance of the aluminum vehicle and the current CAE capability was studied. The vehicle was tested according to the specifications of FMVSS 214. The results show the vehicle meet the federal safety requirements. The impact performances of the front and rear dummies were comparable to those of the steel counterpart. CAE analysis was conducted to develop the body component design and to predict the structural and dummy responses. The results show that without modeling of the joint (rivet and weld) separation, the accuracy of the CAE crash analysis for this aluminum vehicle was inadequate. When empirical separation criteria were incorporated to model the joint, analysis results correlated with the test. Further development of robust modeling methods for joint separation is needed to improve the prediction of aluminum structure crash responses.
Technical Paper

An Obliquely Incident X-Ray Radiography to Measure Greatest Corrosion Depths in Automobile Metallic Plates

2003-03-03
2003-01-1241
An obliquely incident X-ray radiography was developed to measure the greatest depths, orientations and locations of corrosion pits in automobile metallic plates. This technique can also be used on-site for components in use. The corrosion depth profile and the greatest depth can be calculated with the established relations. A 3-D rotational microscope and surface profiler were utilized to evaluate the sensitivities and accuracies of the technique for aluminum and steel plates, respectively.
Journal Article

Analysis of Tool Wear for Trimming of DP980 Sheet Metal Blanks

2017-03-28
2017-01-0302
In recent years, implementation of dual phase (DP) Advanced High Strength Steels (AHSS) and Ultra High Strength Steels (UHSS) is increasing in automotive components due to their superior structural performance and vehicle weight reduction capabilities. However, these materials are often sensitive to trimmed edge cracking if stretching along sheared edge occurs in such processes as stretch flanging. Tool wear is another major issue in the trimming of UHSS because of higher contact pressures at the interface between cutting tools and sheet metal blank caused by UHSS’s higher flow stresses and the presence of a hard martensitic in the microstructure. The objective of the present paper is to discuss the methodology of analyzing die wear for trimming operations of UHSS components and illustrate it with some examples of tool wear analysis for trimming 1.5mm thick DP980 steel.
Technical Paper

Analytical & Experimental Study of Component Level Crash Performance of DP 600 Steel

2006-04-03
2006-01-1587
Advanced High Strength Steels such as Dual Phase 600 (DP600) are gaining popularity in automotive body structure applications. Given their higher strength, the efficacy of Advanced High Strength Steels for intrusion resistance applications is relatively well accepted. On the other hand, use of Advanced High Strength Steels for energy absorption applications needs to be studied and understood on a case-by-case basis. Based on stress-strain characteristics, one would expect DP600 as a material to have better energy absorbing characteristics than conventional High Strength Steel such as HSLA350 (High Strength Low Alloy Steel) that has comparable yield strength. However, as the energy absorption at the component and system level, in addition to material properties, depends on geometry, as well as manufacturing and assembly related factors, a study was conducted to compare the component level energy absorption characteristics of DP600 and HSLA350 parts.
Technical Paper

Application of Advanced High Strength Stainless Steel for Mass Reduction in Automotive Structures - A Front Bumper Beam Case Study

2011-04-12
2011-01-1054
The front bumper of a current production vehicle, which is made of hot-stamped 15B21 aluminized steel, was studied for mass and cost reductions using the Advanced High Strength Stainless Steel product NITRONIC® 30 (UNS Designation S20400) manufactured by AK Steel Corporation. This grade of stainless steel offers a combination of high ductility and strength, which was utilized to significantly modify the design of the bumper beam to incorporate geometry changes that improved its stiffness and strength. The structural performance of the bumper assembly was evaluated using LS-Dyna-based CAE simulations of the IIHS 40% Offset Full-Vehicle Impact at 40 mph with a deformable barrier, and the IIHS Full Width Centerline 6 mph Low-Speed Impact. Optimization of the bumper beam shape and gauge was performed using a combination of manual design iterations and a multi-objective optimization methodology using LS-Opt.
Technical Paper

Application of Dual-Phase Steels for Automotive Closure Panels

2003-03-03
2003-01-0519
With interest in improving vehicle quality and customer satisfaction, Ford Motor Company initiated an effort aimed at improving dent resistance of closure panels. An investigation of various means of product improvement led to the recognition of dual phase steels, due to their inherent formability and strain hardening attributes, as the most appropriate steel panel for outer panel applications. Ispat Inland's new Electro-galvanized dual phase steel DI-FORM 500 (henceforth referred to by the generic designation, DP500), which meets 500 MPa minimum tensile strength, was specifically designed to meet automotive exposed quality standards. This paper compares the dent resistance performance of automotive door assemblies manufactured with both Bake Hardenable 210 (BH210) and DP500 door outer panels. Results indicate the achievement of significantly improved outer panel dent resistance through the use of the DP500 product.
Technical Paper

Authenticity of FE Modeling for Fatigue Assessment of Welds in Automotive Structures

2006-04-03
2006-01-0772
MIG (Metal Inert Gas or Gas Metal Arc welding) and spot welding are the most common way of joining steel components in automotive body, and frame structures. The main design benefits of MIG welding are however the ability to join the parts with single side access and the reduction or elimination of flanges. Different finite element based methodologies exist for predicting the durability of welds. These methodologies are being used in the automotive industry to resolve potential and current durability issues in spot and MIG welded steel components and also to reduce expensive testing practices. However, the analysis results highly depend on the finite element modeling and the accuracy of weld data. This paper briefly describes some of the lessons learned while applying the weld life prediction technology for MIG and spot welds in automotive steel structural components.
Technical Paper

Behavior of Adhesively Bonded Steel Double Hat-Section Components under Axial Quasi-Static and Impact Loading

2016-04-05
2016-01-0395
An attractive strategy for joining metallic as well as non-metallic substrates through adhesive bonding. This technique of joining also offers the functionality for joining dissimilar materials. However, doubts are often expressed on the ability of such joints to perform on par with other mechanical fastening methodologies such as welding, riveting, etc. In the current study, adhesively-bonded single lap shear (SLS), double lap shear (DLS) and T-peel joints are studied initially under quasi-static loading using substrates made of a grade of mild steel and an epoxy-based adhesive of a renowned make (Huntsman). Additionally, single lap shear joints comprised of a single spot weld are tested under quasi-static loading. The shear strengths of adhesively-bonded SLS joints and spot-welded SLS joints are found to be similar. An important consideration in the deployment of adhesively bonded joints in automotive body structures would be the performance of such joints under impact loading.
Technical Paper

Behavior of Adhesively Bonded Steel Double-Hat Section Components under Lateral Impact Loading

2018-04-03
2018-01-1447
Recent experimental studies on the behavior of adhesively-bonded steel double-hat section components under axial impact loading have produced encouraging results in terms of load-displacement response and energy absorption when compared to traditional spot-welded hat- sections. However, it appears that extremely limited study has been carried out on the behavior of such components under transverse impact loading keeping in mind applications such as automotive body structures subject to lateral/side impact. In the present work, lateral impact studies have been carried out in a drop-weight test set-up on adhesively-bonded steel double-hat section components and the performance of such components has been compared against their conventional spot-welded and hybrid counterparts. It is clarified that hybrid components in the present context refer to adhesively-bonded hat-sections with a few spot welds only aimed at preventing catastrophic flange separations.
Technical Paper

Bending Performance of Advanced High Strength Steel Tubes

2009-04-20
2009-01-0085
To reach safety, emissions, and cost objectives, manufacturers of automotive body structural components shape thin gauge, high strength steel tube using a series of manufacturing steps that often include bending, preforming and hydroforming. Challenging grades and bend severity require a sensitive optimization of the tubular bending process. To this end, it is necessary to achieve an understanding of efficient measurement methods capable of capturing small differences in bending formability. In preparation for an optimization of a 90o bend using Dual Phase 780 (DP780) and High Strength Low Alloy (HSLA350) thin walled tube, the measurement techniques of three formability characteristics: thinning, strain, and final geometry were statistically evaluated. In addition, the difference in the bending behaviour of the two grades was evaluated.
Technical Paper

Bending Process Optimization of Dual Phase 780 (DP780) Tubes for Body Structural and Chassis Applications

2010-04-12
2010-01-0230
To reach safety, emissions, and cost objectives, manufacturers of automotive body structural and chassis components shape thin gauge, high strength steel tube with a bending, pre-forming and hydroforming process. Challenging grades and bend severity require a careful optimization of the bending procedure. A joint project between Ford and ArcelorMittal Tubular Products investigated suitable bending parameters for severe bends using commercially available thin-walled DP780 and HSLA350 tubes. This paper summarizes the measurement methods found to be capable of capturing small differences in bending formability and details the influence of bender variables such as boost, pressure die, center-line bend radius and bend angle on the wrinkling, thinning and springback of these tubes. As a result of this work, recommendations were made as to effective bender set-ups for these tubes.
X