Refine Your Search

Topic

Author

Search Results

Technical Paper

A Case Study: Application of Analytical and Numerical Techniques to Squeak and Rattle Analysis of a Door Assembly

2015-06-15
2015-01-2257
Squeak and rattle (S&R) problems in body structure and trim parts have become serious issues for automakers because of their influence on the initial quality perception of consumers. In this study, various CAE and experimental methods developed by Hyundai Motors for squeak and rattle analysis of door systems are reported. Friction-induced vibration and noise generation mechanisms of a door system are studied by an intelligent combination of experimental and numerical methods. It is shown that the effect of degradation of plastics used in door trims can be estimated by a numerical model using the properties obtained experimentally. Effects of changes in material properties such as Young's modulus and loss factor due to the material degradation as well as statistical variations are predicted for several door system configurations. As a new concept, the rattle and squeak index is proposed, which can be used to guide the design.
Technical Paper

A Development of Urea Solution Injection Quantity Decision Logic for SCR System

2013-04-08
2013-01-1069
In this project, phenomena in a SCR catalyst, such as heat transfer and catalytic reactions, are modeled numerically. The model is simplified to be integrated on an electronic control unit. The calibration process for this model has been developed, which is performed on gas bench and validated on a vehicle equipped with a Urea-SCR system and a Rapid Prototype Control Unit. With this simplified SCR reaction model, it is possible to estimate NH3 consumption and properly control the urea injection quantity with less calibration efforts.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Technical Paper

A Sensor Fusion Digital-Map System for Driver Assistance

2013-04-08
2013-01-0734
A traffic situation is getting more complex in urban areas. Various safety systems of an automobile have been developed but fatal and serious accidents still can be made by driver's faults or distractions. The system supporting extend of driver's recognition area is going to be an important part of future intelligent vehicles in order to prevent accidents. In this paper we propose sensor fusion system based on a digital-map for driver assistance. The accurate localization of a host vehicle is achieved by a stereo vision sensor and a digital-map using polygon matching algorithm in urban area. A single-row laser scanner is used for tracking multiple moving objects. The coordinate transformation from sensor frame to global frame is performed to visualize the moving objects on a digital-map. An experiment was conducted in an urban canyon where the GPS signals are frequently interrupted.
Technical Paper

A Study on Control Logic Design for Power Seat

2019-04-02
2019-01-0466
The large luxury sedan seat has a 22-way Movement. It offers a wide range of adjustments to enhance passenger comfort performance while it has many constraints on movement in constrained indoor space. In addition, the power seat is operated by a motor, which makes it difficult for the user to determine the amount of adjustment, unlike determining the amount of adjustment by the power and feel of a person, such as manual seat adjustment. IMS, one-touch mode, is also constrained by parameters such as indoor space package, user's lifestyle, etc. during function playback. This paper aims to design the seat control logic to achieve the best seat comfort while satisfying each constraint. The results of this study are as follows. Increase robustness of power seat control logic. Provide optimal adjustments and comfort at each location. Offer differentiated custom control and seating modes for each seat. Improve customer satisfaction and quality by upgrading software.
Technical Paper

A Study on an Integrated System to Measure and Analyze Customer Vehicle Usage Monitoring through a Smartphone

2014-04-01
2014-01-0183
Customer vehicle usage monitoring is one of the most fundamental elements to consider in the process of developing a durable vehicle. The extant method to research customer vehicle usage takes considerable time and effort because it requires attaching a series of sensors to the vehicle-gyroscope, accelerometer, microphone, and GPS-to gather information through data logs and then to analyze data in a computer where designated analyzing software has been installed. To solve the problem, this paper introduces a new concept of integrated system developed to examine customer vehicle usage that can analyze data by collecting it from a variety of sensors installed on a smartphone.
Technical Paper

A Study on the Strategy and Implementing Technology for the Development of Luxurious Driving Sound

2014-04-01
2014-01-0035
This paper describes a systematic approach to the development of a luxurious driving sound. In the first step, the luxurious sound is conceptualized through jury test, factor analysis and regression analysis. From the results, the main factors and the correlation equation for the luxurious sound are extracted. Also, customer's preference for the luxurious sound is investigated from the customer clinic. In the second step, three core axes and the detailed indices for luxurious sound are defined and quantified. These core axes are a dynamic sound character, a sound balance and a sound harmony. These core axes are also composed of detailed indices and quantified by guide lines. In the third step, each contribution of the sub-systems for sound quality is identified and the target values and methods for implementing the luxurious sound are suggested. In this process, noise path analysis and the customer's preference in each region are considered.
Technical Paper

A study on Reducing the Computing Burden of Misfire Detection using a Conditional Monitoring Method

2004-03-08
2004-01-0722
This paper presents a conditional misfire monitoring method to reduce the computing burden of the motoring. In this conditional monitoring method, the ECU performs misfire detection only when there is high probability of misfire events. The condition for performing the misfire detection is determined by the pre-index which is defined as the deviation of the segment durations of the crankshaft in this paper. The quantity of the code of calculating the pre-index is 7 times less than that of a conventional monitoring method so that the computing burden can be reduced with the conditional monitoring method. The experimental results shown that the pre-index and the conditional monitoring method are valid.
Technical Paper

A throttle/brake control law for vehicle intelligent cruise control

2000-06-12
2000-05-0369
A throttle/brake control law for the intelligent cruise control (ICC) system has been proposed in this paper. The ICC system consists of a vehicle detection sensor, a controller and throttle/brake actuators. For the control of a throttle/brake system, we introduced a solenoid-valve-controlled electronic vacuum booster (EVB) and a step-motor-controlled throttle actuator. Nonlinear computer model for the electronic vacuum booster has been developed and the simulations were performed using a complete nonlinear vehicle model. The proposed control law in this paper consists of an algorithm that generates the desired acceleration/deceleration profile in an ICC situation, a throttle/brake switching logic and a throttle and brake control algorithm based on vehicle dynamics. The control performance has been investigated through computer simulations and experiments.
Technical Paper

Analysis of Vehicle Voice Recognition Performance in Response to Background Noise and Gender Based Frequency

2017-06-05
2017-01-1888
Voice Recognition (VR) systems have become an integral part of the infotainment systems in the current automotive industry. However, its recognition rate is impacted by external factors such as vehicle cabin noise, road noise, and internal factors which are a function of the voice engine in the system itself. This paper analyzes the VR performance under the effect of two external factors, vehicle cabin noise and the speakers’ speech patterns based on gender. It also compares performance of mid-level sedans from different manufacturers.
Technical Paper

Automated Optimizing Calibration of Engine Driveability on the Dynamic Powertrain Test Bed

2013-10-14
2013-01-2588
Engine calibration on the powertrain test bed with transient mode is proposed with dynamic powertrain test bed having low inertia dynamometer. Automated ECU (Engine Control Unit) calibration system is completed with the combination of experimental design software, powertrain test bed, evaluation tools and their electrical interfaces. The process is composed up of the system interface definition, test design using DoE skill, test proceedings by step sequence of connecting systems, measured data collecting, mathematical model and optimization result extraction at the end. All the processes are automated by interfaces between the systems. Acceleration surge is minimized by proposed process by optimizing combustion control labels and tip in driveability is maximized by manipulating torque filter labels of EMS (Engine Management System) logic. Their detailed steps from the problem definition to the verification test results of improved design with vehicle test are presented.
Technical Paper

Automatic Climate Control of the Recreation Vehicle with Dual HVAC System

2001-03-05
2001-01-0591
In this paper, we deal with the automatic climate control for Recreational Vehicle (RV). The HVAC system used for RV was composed of front side and rear side. And, the HVAC system of front side differed from that of rear side in the characteristic of HVAC system. This system was economically optimized for automatic control over 2 separated zones. The development procedure of automatic climate controller was as follows. The first stage was to derive control equation from characteristic analysis of HVAC system and the structural characteristic of vehicle interior. In the second stage, the software (S/W) was designed and programmed to operate microprocessor which calculated previously mentioned equation. Finally, the hardware (H/W) design and building were performed to operate the HVAC system with the calculation results from microprocessor. The control performance of this automatic climate control algorithm and system was evaluated by experimental method.
Technical Paper

Available Power and Energy Prediction Using a Simplified Circuit Model of HEV Li-ion Battery

2010-04-12
2010-01-1074
Due to aging of a battery over lifetime, the rated power and nominal energy capacity will be reduced compared with the initial rated power and capacity. These result in influences on the vehicle driving performance and fuel economy. To monitor and diagnose the aging of the battery, in this paper, the method of predicting the available rated power and energy capacity of Li-ion battery under in-vehicle condition is proposed. Under constant power test, available power is calculated from the estimated parameters using recursive least square method. Further, available energy capacity is evaluated through SOH(cn) defined by the ratio of initial state-of-charge (SOC) variation to present SOC (\GdSOC ⁿ /ΔSOC ⁿ ) variation under arbitrary in-vehicle driving cycles. To verify the proposed method, experiments for aging Li-ion battery are performed in hybrid electric vehicle.
Technical Paper

Closed-Loop Control of Spark Advance and Air-Fuel Ratio in SI Engines Using Cylinder Pressure

2000-03-06
2000-01-0933
The introduction of inexpensive cylinder pressure sensors provides new opportunities for precise engine control. This paper presents a control strategy of spark advance and air-fuel ratio based upon cylinder pressure for spark ignition engines. In order to extend the cylinder pressure based engine control to a wide range of engine speeds, the appropriate choice of control parameters is important as well as essential. For this control scheme, peak pressure and its location for each cylinder during every engine cycle are the major parameters for controlling the air-fuel ratio and spark timing. However, the conventional method requires the measurement of cylinder pressure at every crank angle degree to determine the peak pressure and its location. In this study, the peak pressure and its location were estimated, using a multi-layer feedforward neural network, which needs only five cylinder pressure samples at -40°, -20°, 0°, 20°, and 40° after TDC.
Technical Paper

Convolution of Engineering Methods (TRIZ, FMEA, Robust Engineering) to Creatively Develop New Technologies

2014-04-01
2014-01-0780
Many high risks of failure in developing and applying new technologies exist in the recent automotive industry because of big volume of selling cars in a global market. Several recalls cost companies more than $ 100 million per problem. New technologies always have uncertainty in performing intended functions at various given conditions despite the fact that engineers do their best to develop technologies to meet all the requirements. Uncertainty of new technologies put companies into danger of failing in their business. Therefore, many companies tend to take interest in reducing risks from the uncertainty in technologies, but the increasing complexity of modern automotive technologies make it difficult to develop complete technologies. A new engineering methodology called SPEED Engineering was introduced to reduce the risks of new technology applications and to facilitate engineers to conceive innovative ideas dominating the market in the future.
Technical Paper

Design of A Light Weight Suspension Component Using CAE

1998-02-23
980901
In this paper, a design procedure for the optimized light weight front cross member, which is a sub frame of the car chassis, without sacrificing basic functional requirements is presented. As the first step, optimal structural integrity was calculated and extracted using a CAE technique with the available volume constraint of the package layout. Quantitative design loads for the cross member was achieved by measurement. Dynamic load analysis using ADAMS was also performed to determine the loads. Later, these calculated loads were applied to the FEM stress analysis of the cross member. Furthermore, durability analysis was also performed using load profile database measured from ‘Hyundai Motor Co. Proving Ground’. Four constant amplitude durability tests and two static tests were performed on the cross member prototypes to confirm design reliability.
Technical Paper

Development of Accelerated Reliability Testing Method for Electric Vehicle Motor and Battery System

2014-04-01
2014-01-0748
Currently, the interest in accelerated reliability testing (ART) of electric vehicles parts has been increasing. In particular, an electric motor and battery are vital components of battery powered electric vehicles. The electric motor has two major roles, to discharge or charge battery when it is driven or braking. For analyzing the exact behavior mechanism of electric motor and predicting lithium-ion battery cell degradation, new accelerated reliability testing technology is required. This paper describes the results of research and development in new approach to reliability testing for electric vehicles. The methodology to measure a precise motor output torque of the rotating rotor using telemetry system was provided. The electric energy quantities as well as the used quantities of the electric power were also analyzed. The results of research and development in new approach to reliability testing for electric vehicles were systematized and reflected in development.
Technical Paper

Development of Adaptive Powertrain Control Utilizing ADAS and GPS

2019-04-02
2019-01-0883
This paper introduces the advancement of Engine Idle Stop-and-Go (ISG, also known as Auto Engine Stop-Start) and Neutral Coasting Control (NCC) with utilizing Advanced Driver Assistance System (ADAS) and GPS. The ISG and the In-Neutral Coasting (also known as Sailing or Gliding) have been widely implemented in recent vehicles for improving their fuel economy. However, many drivers find them somewhat disturbing because they basically change behaviors of their cars from what they used to. This annoyance discourages usages of those functions and eventually undermines their benefit of fuel saving. In order to mitigate the problem, new ISG and NCC algorithms are proposed. As opposed to the conventional logics that rely only on driver’s pedal action, the new algorithms determine whether or not to enable those functions for the given driving condition, based on the traffic information obtained using ADAS sensors and the location data from GPS and navigation map.
Technical Paper

Development of Effective Bicycle Model for Wide Ranges of Vehicle Operations

2014-04-01
2014-01-0841
This paper proposes an effective nonlinear bicycle model including longitudinal, lateral, and yaw motions of a vehicle. This bicycle model uses a simplified piece-wise linear tire model and tire force tuning algorithm to produce closely matching vehicle trajectory compared to real vehicle for wide vehicle operation ranges. A simplified piece-wise tire model that well represents nonlinear tire forces was developed. The key parameters of this model can be chosen from measured tire forces. For the effects of dynamic load transfer due to sharp vehicle maneuvers, a tire force tuning algorithm that dynamically adjusts tire forces of the bicycle model based on measured vehicle lateral acceleration is proposed. Responses of the proposed bicycle model have been compared with commercial vehicle dynamics model (CarSim) through simulation in various vehicle maneuvers (ramp steer, sine-with-dwell).
Technical Paper

Development of Fuel Cell Hybrid Electric Vehicle Fueled by Methanol

2003-03-03
2003-01-0421
Hyundai has developed a Santa Fe fuel cell vehicle (FCV) in which methanol fuel processor is installed and integrated with PEM fuel cell system. Pure hydrogen is produced from the mixture of methanol and water by steam reforming followed by metal membrane purification and is then fed to fuel cell system to generate electrical energy. This system has the advantage of simplifying the integration of fuel cell subsystem and fuel processor subsystem. The operation of brassboard system has been carried out for performance evaluation and the development of fuel cell controller. And then the methanol reforming fuel cell system has been incorporated into electric drive train in the vehicle. AC induction motor is powered by the hybrid system using fuel cell and a nickel metal hydride battery as energy sources to improve the system efficiency and the acceleration response of the vehicle.
X