Refine Your Search



Search Results

Technical Paper

A Case Study: Application of Analytical and Numerical Techniques to Squeak and Rattle Analysis of a Door Assembly

Squeak and rattle (S&R) problems in body structure and trim parts have become serious issues for automakers because of their influence on the initial quality perception of consumers. In this study, various CAE and experimental methods developed by Hyundai Motors for squeak and rattle analysis of door systems are reported. Friction-induced vibration and noise generation mechanisms of a door system are studied by an intelligent combination of experimental and numerical methods. It is shown that the effect of degradation of plastics used in door trims can be estimated by a numerical model using the properties obtained experimentally. Effects of changes in material properties such as Young's modulus and loss factor due to the material degradation as well as statistical variations are predicted for several door system configurations. As a new concept, the rattle and squeak index is proposed, which can be used to guide the design.
Technical Paper

A Study on an Integrated System to Measure and Analyze Customer Vehicle Usage Monitoring through a Smartphone

Customer vehicle usage monitoring is one of the most fundamental elements to consider in the process of developing a durable vehicle. The extant method to research customer vehicle usage takes considerable time and effort because it requires attaching a series of sensors to the vehicle-gyroscope, accelerometer, microphone, and GPS-to gather information through data logs and then to analyze data in a computer where designated analyzing software has been installed. To solve the problem, this paper introduces a new concept of integrated system developed to examine customer vehicle usage that can analyze data by collecting it from a variety of sensors installed on a smartphone.
Technical Paper

A Study on the Vehicle Durability Analysis in Braking Mode

The verification of the durability for vehicle body and chassis components is a basic requirement for the vehicle development process. For this, automotive company performs durability test on the proving ground or predict the durability using CAE technology. The representative proving ground test that verifies the durability of vehicle body and chassis components are belgian(hereinafter B/G) and cross-country(hereinafter X/C) test road. The B/G test road verifies the durability of body and chassis components for periodic road load that the vehicle undergoes while travelling on a rough road with regular speed. The X/C test road is composed of squat, dive, bumping and bottoming test modes and this test verifies the durability under aperiodic road load. Because of the relatively long test load of X/C, the road load signal of X/C is too long and enormous to apply it to durability analysis.
Technical Paper

A Technique to Identify the Structure Borne Sound Sources Induced by Powertrain Vibration Behavior

Identification of structure borne sound sources induced by the structural vibration of an automotive powertrain has been studied. Based on the principal component analysis which uses singular value decomposition of a matrix consisting of the auto- and cross-spectra, the operating vibrational analysis is performed. The quantitative description of the output power due to intrinsic incoherent source is addressed. The applicability of the technique is tested both numerically and experimentally. First, the coherence analysis is numerically carried out with a simple structure which is modeled as multi-input and single output to identify the structure borne noise generation process. Second, the actual vibrational behavior of a powertrain structure and the interior noise analysis of a car under the running condition are carried out. The technique is shown to be very effective in the identification of the structure borne noise sources.
Technical Paper

Analysis of an Automotive Ground System Based on a Ground Model and Current Distribution in it

Ground systems in automobiles become more important as more electric devices are installed and the amount of currents flowing increases. The performance of the devices depends on the ground voltage, which is generated between ground points by I-R voltage drops. Therefore, low ground voltages are required for the reduction of the unnecessary power dissipation as well as the reliable performance of the devices. In this paper, we propose an automotive ground system model to analyze ground structure and reveal the main cause of ground voltages. The equivalent resistor network model is presented to describe the relationship between ground points. Then, we validate the model by comparing the simulation results with the measurements in a real car. The presented analysis can provide guidance on designing a reliable ground system such as how to reduce the ground voltages for the proper operation of devices.
Technical Paper

Bio-Based Composites and Their Applications for Auto Interior Parts

Polylactide (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and sugar beets, has attracted much attention for automotive parts application. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the PLA composites including stereocomplexed with L- and D-PLA, we developed the unit processes such as fermentation, separation, lactide conversion, and polymerization. We investigated D-lactic acid fermentation with a view to obtaining the strains capable of producing D-lactic acid, and through catalyst screening test for polycondensation and depolymerization reactions, we got a new method which shortens the whole reaction time of lactide synthesis step. Poly(d-lactide) is obtained from the ring-opening polymerization of d-lactide. Also we investigated several catalysts and polymerization conditions.
Technical Paper

Body Optimization for Front Loading Design Process

An innovative design process is proposed to be applicable in the early conceptual design phase as a means of front loading design. The objective of the study is to minimize trial and errors in the detailed design phase and to shorten the overall design period. The process includes design optimization which is based on efficient modeling techniques. An integrated CAD/CAE modeling method and a simplified quality FE model are key factors in the course of effectuation. The conceptual modeling takes into account the adaptability of computer-generated models with the use of CAD/CAE integrated design environment. To achieve maximum efficiency in the repeated computations in optimization, an FE modeling approach is introduced in terms of simplicity and quality. The proposed FE modeling employs beam and spring elements to construct vehicle body models, which is targeted to produce an instant analysis result with a robust conceptual design at the incipient phase of development.
Technical Paper

Characterization of High Temperature Properties in Al Matrix Composite Fabricated by the Low Pressure Squeeze Infiltration Process

Al matrix composites containing alumina (Al2O3) fibers are fabricated by the low pressure (25MPa) squeeze infiltration process which is suitable for the low cost mass production. Mechanical properties at room temperature as well as elevated temperatures (250°C, 350°C) are improved due to the presence of reinforcements. Upto 350°C, composites maintain a reasonable strength, which is much better than strength of the conventional Al alloy. Composites have equivalent wear rates to those of Ni - resist cast iron. Wear behavior is changed with the sliding speed. At low sliding speed, wear proceeds by the excessive failure of matrix and fiber, whilst, at higher sliding speed, matrix fracture near fiber plays a major role in wear. Wear resistance of 125°C is inferior to that of room temperature due to the reduction of mechanical properties followed by matrix softening and poor bonding.
Technical Paper

Convolution of Engineering Methods (TRIZ, FMEA, Robust Engineering) to Creatively Develop New Technologies

Many high risks of failure in developing and applying new technologies exist in the recent automotive industry because of big volume of selling cars in a global market. Several recalls cost companies more than $ 100 million per problem. New technologies always have uncertainty in performing intended functions at various given conditions despite the fact that engineers do their best to develop technologies to meet all the requirements. Uncertainty of new technologies put companies into danger of failing in their business. Therefore, many companies tend to take interest in reducing risks from the uncertainty in technologies, but the increasing complexity of modern automotive technologies make it difficult to develop complete technologies. A new engineering methodology called SPEED Engineering was introduced to reduce the risks of new technology applications and to facilitate engineers to conceive innovative ideas dominating the market in the future.
Technical Paper

Design Method of Test Road Profile for Vehicle Accelerated Durability Test

This report explains the basic theory of designing the accelerating durability test road and the role of each factors contributing to the test road surface profile. Also this road is designed by considering the charactors of vehicle suspension system and conditions of driving. In test road, the factors affecting to the vehicle structural durability are correlation among surface shape of road profile, frequency of vehicle suspension system,distribution of axle twist angle and vibration of road profile height. Road PSD magnitude and frequency delay is used to control these factors relation.
Technical Paper

Design of A Light Weight Suspension Component Using CAE

In this paper, a design procedure for the optimized light weight front cross member, which is a sub frame of the car chassis, without sacrificing basic functional requirements is presented. As the first step, optimal structural integrity was calculated and extracted using a CAE technique with the available volume constraint of the package layout. Quantitative design loads for the cross member was achieved by measurement. Dynamic load analysis using ADAMS was also performed to determine the loads. Later, these calculated loads were applied to the FEM stress analysis of the cross member. Furthermore, durability analysis was also performed using load profile database measured from ‘Hyundai Motor Co. Proving Ground’. Four constant amplitude durability tests and two static tests were performed on the cross member prototypes to confirm design reliability.
Technical Paper

Development of Accelerated Reliability Testing Method for Electric Vehicle Motor and Battery System

Currently, the interest in accelerated reliability testing (ART) of electric vehicles parts has been increasing. In particular, an electric motor and battery are vital components of battery powered electric vehicles. The electric motor has two major roles, to discharge or charge battery when it is driven or braking. For analyzing the exact behavior mechanism of electric motor and predicting lithium-ion battery cell degradation, new accelerated reliability testing technology is required. This paper describes the results of research and development in new approach to reliability testing for electric vehicles. The methodology to measure a precise motor output torque of the rotating rotor using telemetry system was provided. The electric energy quantities as well as the used quantities of the electric power were also analyzed. The results of research and development in new approach to reliability testing for electric vehicles were systematized and reflected in development.
Technical Paper

Development of Cast-Forged Knuckle using High Strength Aluminum Alloy

Aluminum steering knuckles are widely employed for weight reduction and improvement of ride & handling performance. In this study, a high strength aluminum alloy for cast-forged knuckle was designed to achieve higher mechanical properties than those of the conventional foundry alloy. Using this alloy, high strength knuckles were manufactured and performed test of mechanical properties, suspension module strength and durability. The strength and the elongation of the developed knuckle were increased by 20% and 40%, respectively, as compared with the conventional alloy. Also this knuckle passed the static strength and durability test of the front suspension module.
Technical Paper

Development of Nu 2.0L CVVL Engine

Hyundai Motor Group launched a Continuously Variable Valve Lift (CVVL) engine in 2012. The engine is equipped with HMG's unique CVVL mechanism and is characterized by low fuel consumption, high performance and its responsiveness. The CVVL mechanism is based on a six-linkage mechanism and has advantages of compactness and durability. The engine is a 4 cylinder In-Line, 2.0L gasoline engine and is designed for a mid-sized passenger car. The engine increases fuel efficiency by 7.7% and the peak engine power by 4.2%. One of the most challenging issues in producing a CVVL engine is the valve lift deviations throughout the engine cylinders. The valve cap shim and set screw were designed to adjust the valve lift deviations. Cap shim thickness is chosen by measuring the valve top height, and shoe lift of the cam carrier assembly. The set screw is an auxiliary device to adjust the valve lift deviation.
Technical Paper

Development of Supercarburized Tappet Shim to Improve Fuel Economy

A newly developed surface hardening process, supercarburizing, has been developed for the application of tappet shim to improve fuel economy. Supercarburizing has been introduced to increase resistance of wear and pitting performance and was designed to have supersaturated carbon surface layer and further to have spheroidized carbide morphology. In this presentation, the process variables, such as surface microstructure, morphology and distribution of carbide precipitation, will be discussed via the results of friction loss tests. At an entire speed range investigated, the application of supercarburized tappet shim improved fuel economy with 25∼30% in terms of valve train itself and with 4∼5% concerning on the gross engine performance. The fuel economy analysis showed that the improved surface hardening process of tappet shim increased fuel economy of vehicle about 1.4∼3.6%.
Journal Article

Development of Virtual Road Wheel Input Forces for Belgian Ground

Numerical durability analysis is the only approach that can be used to assess the durability of vehicles in early stages of development. In these stages, where there are no physical prototypes available, the road wheel forces (or spindle forces) for durability testing on Belgian PG (Proving Ground) must be predicted by VPG (Virtual Proving Ground) or derived from the measured forces of predecessor vehicles. In addition, the tuning parts and geometry are not fixed at these stages. This results in the variation of spindle forces during the development stages. Therefore, it is not reasonable to choose the forces predicted at a specific tuning condition as standard forces. It is more reasonable to determine the standard forces stochastically using the DB of the measured forces of predecessor vehicles. The spindle forces measured or predicted on Belgian PG are typically stationary random.
Technical Paper

Development of primerless paintable thermoplastic polyolefin with high impact strength for vehicle interior parts

A new thermoplastic polyolefin with primerless adhesion to paint has been developed by polypropylene (PP) with α-olefin copolymers, mineral fillers and some additives. It can substantially reduce costs and environmental problems by eliminating primer treating operations, traditionally treated from trichloroethene (TCE). This new material exhibits unique solid-state texture that rubbery polymer component are typically dispersed in lamellar structure matrix. Versus conventional PP or thermoplastic olefin (TPO), it provides excellent brittle-ductile (BD) transition as well as paintability. Also it is expected to have a significant impact on interior parts as requirements for material change to an emphasis on light weight, lower cost, more efficient finishing.
Technical Paper

Development of the Overmolding Instrument Panel

We developed the hard IP (Instrument Panel) that is integrally over molded with a soft layer (TPO, Thermo Plastic Olefin) for the soft feeling and cost reduction. And also we produced the cost-effective PAB(Passenger-side Airbag) door system that had an in-mold tearseam and avoided competitors' patents simultaneously. The development procedure of this technology is; ① Material for overmolding ② Design optimization ③ Solving tool challenges. The reduction of process through integrally molding with soft material helped to accomplish a soft feeling on the IP and cost reduction at the same time. The deployment, head impact and heat aging tests were conducted and 5 patents were applied such as the optimization of the mold structure and injection condition.
Technical Paper

Effect of Normalized Microstructure in Alloy Steel on the Performance of Planetary Gear Set of Automatic Transmission

The banded microstructure of pearlite and ferrite in normalized alloy steel is susceptible to thermal distortion during carburizing process due to its unidirectional orientation parallel to rolling direction. The planetary gears with material of banded microstructure have been experienced in high thermal distortion during carburizing and quenching process and result in uneven surface hardness and effective case depth at the inside of pinion gear after honing. These defects played failure initiation site roles in durability test during development of new automatic transmission. The galling between the contacting components in severe lubricating system was the main failure mechanism. Double normalizing at 920 °C was designed to resolve the banded microstructure of normalized alloy steel. The microstructure and grain size of the double heated steel became equiaxed and fine due to homogenizing and recrystallization through double heat treatment.
Technical Paper

Evaluation System for Simulating and Reducing Interior Noise Caused by Wind

Fluctuation in the sound pressure level of the interior noise of an on-road vehicle is always caused by unpredictable factors such as wind gusts, traffic, roadside obstacles, and changing drive-by-drive conditions, and is hence, not reproducible in nature. Since the human brain is known to be more sensitive to noise that is amplitude-modulated than noise at a steady level [1], it is important to evaluate and improve the NVH performance of a vehicle in terms of the fluctuating interior noise likely to be experienced by drivers or users. To this end, an evaluation system was developed as part of this study, the details of which are presented in this paper. The system is composed of hardware for database storage and replay of sounds, and software for synthesizing the noise signals. For given wind tunnel test results, the evaluation system yields a wind noise model that can synthesize wind noise signals for any wind scenario.