Refine Your Search

Topic

Author

Search Results

Technical Paper

A Novel Vehicle-to-Vehicle Fast Charging Control System Utilizing Motor and Inverter in EV

2022-03-29
2022-01-0170
As electric vehicles become more widespread, such vehicles may be subject to “range anxiety” due to the risk of discharging during driving or the discharging when left unused for a long period. Accordingly, a vehicle equipped with a mobile charger that can provide a charge in an emergency. The vehicle with the mobile charger is usually composed of a large capacity battery, a power converter in a small truck. However, the large capacity battery and the power converter are disadvantageous in that they are large in size and expensive and should be produced as a special vehicle. In this paper, we propose a method to solve the problem using an internal EV system without requiring an additional power generation, battery and a charging-and-discharging device. The method is a novel Vehicle-to-Vehicle (V2V) fast charging control system utilizing motor and inverter in EV.
Technical Paper

A Study for Improving the Sound Quality of Vehicle Horns through Acoustic Characteristics Analysis and CAE Method Development

2013-04-08
2013-01-0422
It is necessary for vehicle horns not only to satisfy regulations on the sound level but also to fulfill various demands related with sound quality. For example, a disk type horn which is attached on most of small size vehicles has been required to improve its sharp feeling sound. However, the improvement of horn sound has been deterred mainly due to the deficiency of the understanding on how design factors are related with emotional judgments on horn sound. In addition, a proper CAE tool is not available in the process of horn design since it is difficult to describe multi-physical phenomena engaged with horns. The purpose of this study is to improve the sound quality of a disk type horn. In order to achieve this goal, firstly, acoustic characteristics of horns were obtained through a series of experiments. In addition, various sound quality metrics were examined in order to derive design factors affecting sound quality enhancement.
Technical Paper

Combined Condensing Air-Conditioning System

2014-04-01
2014-01-0712
In order to improve the fuel consumption ratio of the vehicle, a great deal of research is being carried out to improve air-conditioning efficiency. Increasing the efficiency of the condenser is directly connected to the power consumption of the compressor. This paper describes an experimental method of using an additional water-cooled condenser to reduce power consumption and decrease discharge pressure of the air-conditioning system. First, the principle of a combined cooling (water + air) method was evaluated theoretically. Next, experimental proof was conducted with the additional water-cooled condenser. The shape and structure is similar to the plate type of the transmission oil cooler used in a radiator. Through a number of tests, it was found that it is possible is to reduce power consumption of compressor by decreasing discharge pressure.
Technical Paper

Control of Steer by Wire System for Reference Steering Wheel Torque Tracking and Return-Ability

2018-04-03
2018-01-0566
This paper proposes a torque tracking algorithm via steer by wire to achieve the target steering feel and proposed a modified friction model to obtain return-ability. A three dimensional reference steering wheel torque map is designed using the measurement data of the steering characteristics of the target vehicle at a transition test and a weave test. In order to track the reference steering wheel torque, a sliding mode control is used in the tracking algorithm. In addition, to achieve return-ability, the modified friction model for steer by wire is used instead of the friction model defined in the reference steering wheel torque map. The modified friction model is composed of various models according to the angular velocity. The angular velocity and the angular acceleration used in the control algorithm are estimated using a kalman filter.
Technical Paper

Development of Composite Body Panels for a Lightweight Vehicle

2001-03-05
2001-01-0102
Recently weight reduction is increasingly needed in automotive industry to improve fuel efficiency and to meet a CO2 emission requirement. In this paper, we prepared composite body panels for the lightweight vehicle based on a small passenger car. Fender, roof, door, side outer panel, and tailgate are made from hand layup using a glass/carbon hybrid reinforcement. Hood is made from low pressure sheet molding compound (SMC) to investigate feasibility of mass production. Both hand layup and low pressure SMC materials are newly developed and their physical properties are examined. CAE simulation was done for strength analysis and optimization of thickness for the body panels.
Technical Paper

Development of Effective Bicycle Model for Wide Ranges of Vehicle Operations

2014-04-01
2014-01-0841
This paper proposes an effective nonlinear bicycle model including longitudinal, lateral, and yaw motions of a vehicle. This bicycle model uses a simplified piece-wise linear tire model and tire force tuning algorithm to produce closely matching vehicle trajectory compared to real vehicle for wide vehicle operation ranges. A simplified piece-wise tire model that well represents nonlinear tire forces was developed. The key parameters of this model can be chosen from measured tire forces. For the effects of dynamic load transfer due to sharp vehicle maneuvers, a tire force tuning algorithm that dynamically adjusts tire forces of the bicycle model based on measured vehicle lateral acceleration is proposed. Responses of the proposed bicycle model have been compared with commercial vehicle dynamics model (CarSim) through simulation in various vehicle maneuvers (ramp steer, sine-with-dwell).
Journal Article

Development of Virtual Road Wheel Input Forces for Belgian Ground

2014-04-01
2014-01-0381
Numerical durability analysis is the only approach that can be used to assess the durability of vehicles in early stages of development. In these stages, where there are no physical prototypes available, the road wheel forces (or spindle forces) for durability testing on Belgian PG (Proving Ground) must be predicted by VPG (Virtual Proving Ground) or derived from the measured forces of predecessor vehicles. In addition, the tuning parts and geometry are not fixed at these stages. This results in the variation of spindle forces during the development stages. Therefore, it is not reasonable to choose the forces predicted at a specific tuning condition as standard forces. It is more reasonable to determine the standard forces stochastically using the DB of the measured forces of predecessor vehicles. The spindle forces measured or predicted on Belgian PG are typically stationary random.
Technical Paper

Enhancement of Vehicle Dynamics Model Using Genetic Algorithm and Estimation Theory

2003-03-03
2003-01-1281
A determination of the vehicle states and tire forces is critical to the stability of vehicle dynamic behavior and to designing automotive control systems. Researchers have studied estimation methods for the vehicle state vectors and tire forces. However, the accuracy of the estimation methods is closely related to the employed model. In this paper, tire lag dynamics is introduced in the model. Also application of estimation methods in order to improve the model accuracy is presented. The model is developed by using the global searching algorithm, a Genetic Algorithm, so that the model can be used in the nonlinear range. The extended Kalman filter and sliding mode observer theory are applied to estimate the vehicle state vectors and tire forces. The obtained results are compared with measurements and the outputs from the ADAMS full vehicle model. [15]
Technical Paper

Evaluation of Time-Resolved Nano-Particle and THC Emissions of Wall-Guided GDI Engine

2011-10-06
2011-28-0022
A nano-sized PM and THC emission characteristics were investigated according to the fuel injection strategy such as a pressure and timing in the GDI engine. On the part-load condition, the particulate emissions exhibited a strong sensitivity to the injection timing. The fuel injection pressure also had a great association with the nano-particles and THC. A size of PM exhausted from the GDI engine located near 10nm on the part-load. In contrast, accumulation mode particles within 60 - 80nm mainly exhausted during the cold transient start phase. Increment of fuel injection pressure positively affected on the nano-particle and THC emissions during the start of the engine, as well.
Technical Paper

Flow Analysis and Catalytic Characteristics for the Various Catalyst Cell Shapes

1999-05-03
1999-01-1541
The shape of unit cell of catalytic converter has great influence on the conversion efficiency and pressure drop characteristics. Therefore, the properties of design parameters of catalyst monolith were analyzed and the parameters of various cell shapes of catalyst were compared. Also, the numerical study of a three dimensional compressible flow in a Close-coupled Catalyst Converter (CCC) system was performed to investigate the flow characteristics and the flow distribution of exhaust gases. Unsteady flow analysis shows that severe interferences of each pulsating exhaust gas flow as well as geometric factors (junction, mixing pipe, cell shape etc.) influence greatly on the flow uniformity and flow characteristic in substrate. The results can be applied for the catalytic converter design.
Technical Paper

In-Gear Slip Control Strategy of Dry-Clutch Systems Using a Sliding Mode Control

2019-04-02
2019-01-1305
This paper proposes a clutch control strategy during in-gear driving situations for Dual Clutch Transmissions (DCTs). The clutch is intentionally controlled to make small amount of a slip to identify the torque transfer capacity. The control objective of this phase is to ensure the clutch slip fairly remaining the specified value. To achieve this, the micro-slip controller is designed based on sliding mode control theory. Experimental verifications performed on onboard control system of the DCT equipped vehicle demonstrate that the proposed controller good tracking performance of the desired slip speed.
Technical Paper

Incorporation of Friction Material Surface Inhomogeneity in Complex Eigenvalue Analysis to Improve the Accuracy of Brake Squeal Analysis

2018-10-05
2018-01-1873
The sliding surface of the brake friction material is not uniform but composed of random contact plateaus with a broad pressure distribution, which are known to closely related to the triggering mechanism of friction induced noise and vibrations. The non-uniform contact plateaus are attributed to the various ingredients in the friction material with a broad range of physical properties and morphology and the size and stiffness of the plateau play crucial roles in determining the friction instability. The incorporation of friction surface inhomogeneity is, therefore, crucial and has to be counted to improve the accuracy of the numerical calculation to simulate brake noise. In this study, the heterogeneous nature of the friction material surface was employed in the simulation to improve the correlation between numerical simulations and experimental results.
Journal Article

Integrated Chassis Control for Improving On-Center Handling Behavior

2014-04-01
2014-01-0139
This paper proposes a new integrated chassis control (ICC) using a predictive model-based control (MPC) for optimal allocation of sub-chassis control systems where a predictive model has 6 Degree of Freedom (DoF) for rigid body dynamics. The 6 DoF predictive vehicle model consists of longitudinal, lateral, vertical, roll, pitch, and yaw motions while previous MPC research uses a 3 DoF maximally predictive model such as longitudinal, lateral and yaw motions. The sub-chassis control systems in this paper include four wheel individual braking torque control, four wheel individual driving torque control and four corner active suspension control. Intermediate control inputs for sub-chassis control systems are simplified as wheel slip ratio changes for driving and braking controls and vertical suspension force changes for an active suspension control.
Journal Article

Mode-Dynamic Task Allocation and Scheduling for an Engine Management Real-Time System Using a Multicore Microcontroller

2014-04-01
2014-01-0257
A variety of methodologies to use embedded multicore controllers efficiently has been discussed in the last years. Several assumptions are usually made in the automotive domain, such as static assignment of tasks to the cores. This paper shows an approach for efficient task allocation depending on different system modes. An engine management system (EMS) is used as application example, and the performance improvement compared to static allocation is assessed. The paper is structured as follows: First the control algorithms for the EMS will be classified according to operating modes. The classified algorithms will be allocated to the cores, depending on the operating mode. We identify mode transition points, allowing a reliable switch without neglecting timing requirements. As a next step, it will be shown that a load distribution by mode-dependent task allocation would be better balanced than a static task allocation.
Technical Paper

Model Based Control for a Pressure Control Type CVT

2004-08-23
2004-40-0031
A model based control algorithm for the pressure control type CVT has been developed. First, a P-line is proposed from the steady state relationship between the primary and secondary pressure for the given speed ratio to predict the shift performance. The P-line shows the pressure difference from the steady state primary pressure to the maximum(or minimum) pressure available for the given secondary pressure. It is found from the P-line that the bigger the pressure difference, the faster the shift speed. Based on the steady state characteristics of the pressure control type ratio control valve(RCV), the model based control algorithm is proposed. In the model based control, ratio control solenoid valve(RCSV) control duty is supplied in the feedforward loop.
Technical Paper

Modeling and Validation of ABS and RSC Control Algorithms for a 6×4 Tractor and Trailer Models using SIL Simulation

2014-04-01
2014-01-0135
A Software-in-the-Loop (SIL) simulation is presented here wherein control algorithms for the Anti-lock Braking System (ABS) and Roll Stability Control (RSC) system were developed in Simulink. Vehicle dynamics models of a 6×4 cab-over tractor and two trailer combinations were developed in TruckSim and were used for control system design. Model validation was performed by doing various dynamic maneuvers like J-Turn, double lane change, decreasing radius curve, high dynamic steer input and constant radius test with increasing speed and comparing the vehicle responses obtained from TruckSim against field test data. A commercial ESC ECU contains two modules: Roll Stability Control (RSC) and Yaw Stability Control (YSC). In this research, only the RSC has been modeled. The ABS system was developed based on the results obtained from a HIL setup that was developed as a part of this research.
Technical Paper

Modeling of Pulse Width Modulation Pressure Control System for Automatic Transmission

2002-03-04
2002-01-1257
Generally, the widely used hydraulic control system in automatic transmissions is pulse width modulation (PWM) type. It consists in a PWM solenoid valve and a reducing type second stage valve, so called pressure control valve (PCV), to amplify pressure or flow rate. In this study, the mathematical models of the PWM solenoid valve and the PCV with moderate complexity are proposed. Then, their behavior is analyzed from the steady state characteristics. Finally, we find that there are good matches between the dynamic simulation results and the experimental data.
Technical Paper

Numerical Study on Fluid Flow and Heat Transfer Characteristics of a Ventilated Brake Disc Connected to a Wheel

2018-10-05
2018-01-1878
The role of a brake disc is to convert the kinetic energy of automobiles into thermal energy caused by friction between the brake pads and disc surfaces. The braking performance of an overheated disc is decreased due to hot judder and fade. Hence, the cooling technology of a brake disc is one of the most important issues related to automobile safety. In the present study, the fluid flow and heat transfer analysis of a ventilated brake disc are conducted numerically. Some geometries of automotive parts such as bearings, hubs and wheels are considered in this study. The commercial code ANSYS CFX is used to simulate the fluid flow and the conjugate heat transfer which includes conduction and convection. To evaluate the cooling performance in each case, the results, including the flow patterns of cooling air inside the wheel and the heat transfer coefficient distribution at the disc surfaces, were investigated and compared for various disc-hub combinations.
Technical Paper

Optimization of Cooling Air Duct and Dust Cover Shape for Brake Disc Best Cooling Performance

2014-09-28
2014-01-2519
Owing to the enhanced performance of engines these days, more heat should be dissipated in the braking system. Failure of doing this properly causes temperature rise in the brake disc which result in the brake fade, disc distortion, brake judder, etc. A cooling-air-duct was proposed as a solution to prevent these from happening. In this paper, we present our work based on experiments optimized parameters such as direction, location, shapes and the size of the duct for the cooling-air-duct installation in real cars. We installed the duct extended from a front bumper to a rear wheel guard. Experimental parameters were compared with theoretical analysis using the impinging jet analysis. The heat transfer coefficients were determined by using the finite elements method (FEM). We found that our experimental data is supportive of theoretical analysis. We believe that our results should serve an useful guideline for designing the cooling-air-duct for braking system.
Technical Paper

Prediction of In-Cylinder Pressure for Light-Duty Diesel Engines

2019-04-02
2019-01-0943
In recent years, emission regulations have been getting increasingly strict. In the development of engines that comply with these regulations, in-cylinder pressure plays a fundamental role, as it is necessary to analyze combustion characteristics and control combustion-related parameters. The analysis of in-cylinder pressure data enables the modelling of exhaust emissions in which characteristic temperature can be derived from the in-cylinder pressure, and the pressure can be used for other investigations, such as optimizing efficiency and emissions through controlling combustion. Therefore, a piezoelectric pressure sensor to measure in-cylinder pressure is an essential element in the engine research field. However, it is difficult to practice the installation of this pressure sensor on all engines and on-road vehicles owing to cost issues.
X