Refine Your Search

Topic

Search Results

Technical Paper

A Development of Smart Ventilation System

2015-03-10
2015-01-0018
There are some problems “windows fog up a lot” for ventilation system. We have Test Development Procedure to prevent the fog problems. But, Many fog problems occurred in the cars that we made. So in this paper, new ventilation system is needed and developed. The Smart Ventilation System automatically controls indoor air quality even though the blower motor is off. There are two sensors that is used for AutoDefogSensor system and CO2 CONTROL system.. The sensor is on when blower motor and heater control is off. We use these signals and make new ventilation logics. We evaluate this system in chamber & '13 winter test in USA.
Technical Paper

A Research on Autonomous Vehicle Control in Track Beyond Its Limits of Handling

2021-04-06
2021-01-0977
This paper presents the research related to the self-driving system that has been actively carried out recently. Previous studies have been limited to ensure the path following performance in linear and steady state-alike handling region with small lateral acceleration. However, in the high speed driving, the vehicle cornering response is extended to nonlinear region where tire grips are saturated. This requires a technology to create the driving path for minimum time maneuvering while grasping the tire grip limits of the vehicle in real time. The entire controller consists of three stages-hierarchy: The target motion is determined in the supervisor phase, and the target force to follow the target behavior is calculated in the upper stage controller. Finally, the lower stage controller calculates the actuator phase control input corresponding to the target force.
Technical Paper

A Study for Fuel Economy Improvement on Applying New Technology for Torsional Vibration Reduction of Crank Pulley

2013-10-14
2013-01-2514
The method of Front End Auxiliary Drive (FEAD) system optimization can be divided into two ways. One is to use a mechanical device that decouples crank pulley from torsional vibration of crank shaft by using characteristics of spring. The other is to control belt tension through auto-tensioner in addition of alternator pulley device. Because the former case has more potential to reduce belt tension than the latter case, the development of mechanically decoupled crank pulley, despite of its difficulty of development, is getting popular among the industry. This paper characterizes latest crank pulley technologies, Crank Decoupler and Isolation Pulley, for torsional vibration reduction through functionality measurement result which composed of irregularity, slip, tensioner movement, belt span vibration, bearing hubload of idler and so on. Also it investigates their potential of belt tension reduction through steady state point fuel consumption test on dynamometer.
Technical Paper

A Study of Layout Regarding Integrated Controls on the Steering Wheel

2013-03-25
2013-01-0036
In order to utilize in-vehicle systems efficiently, many vehicles are becoming equipped with integrated controls near the center fascia or the control box. However, the placement of these control systems can cause safety issues and risks due to visual distractions. In this study, we proposed a new integrated touch screen on the steering wheel. For this experiment, a control system was placed on the steering wheel or the center fascia. 15 participants were required to drive while utilizing vent and navigation control tasks regarding four different locations. Three of these locations were based on the steering wheel (center, upper right, lower right) and one location on the center fascia. Afterwards, the task completion time and visual distraction rate of the different locations were measured and compared. The results showed that a touch screen placed on the upper right section of the steering wheel had better performance and lower user discomfort.
Technical Paper

A Study of Low-Friction Road Estimation using an Artificial Neural-Network

2018-04-03
2018-01-0811
Road friction estimation algorithms had been studied for many years because it is very important factor for safety control and fuel efficiency of vehicle. But traditional solutions are hard to adapt in automotive industry because their performance is not sufficient enough and expensive to implement. Therefore, this paper proposes a road friction estimation algorithm based on a trained artificial neural-network which is low cost and robust. The suggested method doesn’t need expensive additional sensors such as optical or lidar sensor, also it shows better performance in real car environment compared to other algorithms based on vehicle dynamics. In this paper, we would describe this algorithm in detail and analyze the test results evaluated in real road conditions.
Technical Paper

A Study on Front End Auxiliary Drive(FEAD) System of 48V Mild Hybrid Engine

2018-04-03
2018-01-0414
48V mild hybrid engine is one of major eco-friendly technology for global CO2 reduction policy. The 48V mild hybrid engine enables to operate torque boost, recuperation and ISG status by MHSG(Mild Hybrid Starter and Generator). The FEAD(Front End Auxiliary Drive) system is a very important role to transfer MHSG power to crankshaft at the mild hybrid engine. The conventional FEAD configuration is relatively simple because it transfers power from crankshaft to auxiliary drive components in one direction. But the FEAD configuration of 48V mild hybrid engine is not simple due to bidirectional power transmission between crankshaft and MHSG. For instance, in case of torque boost mode, the tight side of auxiliary belt is entry span of MHSG. On the contrary, the tight side of auxiliary belt is exit span of MHSG at recuperation mode.
Journal Article

A Tailgate(Trunk) Control System Based on Acoustic Patterns

2017-03-28
2017-01-1634
When customers use a tailgate (or trunk), some systems such as power tailgate and smart tailgate have been introduced and implemented for improving convenience. However, they still have some problems in some use cases. Some people have to search for the outside button to open the tailgate, or they should take out the key and push a button. In some cases, they should move their leg or wait a few seconds which makes some people feel that it is a long time. In addition, they have to push the small button which is located on the inner trim in order to close the tailgate. This paper proposes a new tailgate control technology and systems based on acoustic patterns in order to solve some inconvenience. An acoustic user interaction (AUI) is a technology which responds to human’s rubbing and tapping on a specific part analyzing the acoustic patterns. The AUI has been recently spotlighted in the automotive industry as well as home appliances, mobile devices, musical instruments, etc.
Journal Article

Analysis of Influence of Tire F and M on Improvement of Vehicle On-Center Steering

2016-04-05
2016-01-1569
In this research, the influence of tire force and moment (F&M) characteristics on vehicle on-center steering performance was analyzed and then how to improve vehicle on-center performance was studied through controlling tire structure design parameter, tread pattern shape and tread grip characteristics. First, the relationship between vehicle on-center steering performance and tire F&M characteristics was identified by comparing vehicle steering measurements and tire F&M measurements. It was found that key factor of tire related with on-center performance is aligning torque at lower slip angles. As the aligning torque at slip angle 1° increases, on-center feel is improved. Second, the influence of tire design parameters on tire aligning torque was studied through F&M finite element (FE) analysis and measurement. It was found that the aligning torque at lower slip angle increases as stiffness of the tread and sidewall decreases.
Technical Paper

Body Cross-Sectional Stiffness Criteria for the Optimal Development of the BIW Weight and Torsional Stiffness

2021-04-06
2021-01-0797
Body-in-white plays a key role in protecting passengers in the event of collision between vehicles, and also endures external forces during cornering in a vehicle. Stiffness of body-in-white is the basic characteristic of a car body, and it is closely related to the full-vehicle-level performance such as body durability, ride and handling, etc. There have been many attempts to correlate body stiffness to full-vehicle-level performance, and studying the relationship between torsional body stiffness and durability has been the popular topic among others. In general, it is believed to be true that bodies with high torsional stiffness exhibit good durability performance, and in many cases this assumption seems to be verified. However, not all cases are true to this assumption. In this paper, relationship between torsional body stiffness and body durability has been closely studied.
Technical Paper

Concept Study on Windshield Actuation for Active Control of Wind Noise in a Passenger Car

2020-09-30
2020-01-1535
The windshield is an integral part of almost every modern passenger car. Combined with current developments in the automotive industry such as electrification and the integration of lightweight material systems, the reduction of interior noise caused by stochastic and transient wind excitation is deemed to be an increasing challenge for future NVH measures. Active control systems have proven to be a viable alternative compared to traditional passive NVH measures in different areas. However, for windshield actuation there are neither comparative studies nor actually established actuation concepts available to the automotive industry. This paper illustrates a comparative conceptual study on windshield actuation for the active control of wind noise in a passenger car. Making use of an experimental modal analysis of the windshield installed in a medium-sized vehicle, a reduced order numerical simulation model is derived.
Technical Paper

Development of Low-Noise Cooling Fan Using Uneven Fan Blade Spacing

2008-04-14
2008-01-0569
When unifying the functions of widely used two-fan, engine cooling system into a single fan unit, the noise and power issues must be addressed. The noise problem due to the increased fan radius is a serious matter especially as the cabin noise becomes quieter for sedans. Of the fan noise components, discrete noise at BPF's (Blade Passing Frequency) seriously degrades cabin sound quality. Unevenly spaced fan is developed to reduce the tones. The fan blades are spaced such that the center of mass is placed exactly on the fan axis to minimize fan vibration. The resulting fan noise is 11 dBA quieter in discrete noise level than the even bladed fan system.
Technical Paper

Development of Mass Producible ANC System for Broad-Band Road Noise

2018-06-13
2018-01-1561
The mass producible broad-band ANC system for road noise is developed with fully digital control system. For this configuration, installation packages are intensively considered by minimizing size of the controller, simplifying wiring system and implementing virtual microphone techniques. Virtual microphone technique enables error microphone to be installed in remote position of driver’s ear, and therefore, increases installation degree of freedom significantly. To enhance noise control performance with the minimum latency, filter design of FxLMS algorithm is optimized while additional audio compensation techniques are applied to maintain audio performance of amplifier. The present ANC system is equipped to HMC (Hyundai Motor Company) new release of hydrogen driven vehicle, which is introduced in the technology promotion event in Pyeongchang Olympic 2018.
Technical Paper

Development of Output Voltage Adjusting Control Based on ADAS Map Information in Low-Voltage DCDC Converter System for HEV Fuel Efficiency

2016-04-05
2016-01-1236
One of the ways to improve the fuel efficiency of the HEV (Hybrid and Electric Vehicles) is to optimize automotive electric system. In order to achieve this, the LDC (Low voltage DC-DC Converter) variable voltage was controlled. Using the ADAS (Advanced Driver Assistance System) map, the charge-discharge behaviors of 12V lead-acid battery was predicted during driving so that, the battery could be charged efficiently. In this study, the feedback control system for 12V battery discharging was designed to compromise between the 12V battery SOC (State of Charge) and the driving conditions at different traffic points. In contrast to earlier approaches, this experimental result indicates that the LDC variable voltage control based on ADAS is able to reduce the LDC average output power by 17.1% therefore, increasing fuel efficiency and ensuring the durability of the 12V battery.
Technical Paper

Development of a Pre-Validation Mode for Cooling Module by Test and CAE

2018-04-03
2018-01-0466
In case of cooling module rotated by belt, many sources (vehicle’s vibration, belt’s tension and thrust force by rotated fan) are acting on it. Because it is not easy to analyze them individually, there were no rig test modes for pre-validation while developing a new vehicle. In this study, we correlated the strain gauges signal to belt’s tension and fan’s thrust force, and measured acceleration of a vehicle and cooling module by driving a vehicle on the several test roads. In that case of measured acceleration data, we could analyze it by using PDF and construct the representative rig test modes considering vibrational fatigue characteristics by using the FDS. These modes can be utilized while developing a new vehicle without measuring anymore. Also, we could understand each load’s characteristics. It is confirmed that the factors affecting the fatigue were not only the vehicle’s vibration but also the belt’s installation tension.
Technical Paper

Development, System Integration and Experimental Investigation of an Active HVAC Noise Control System for a Passenger Car

2020-09-30
2020-01-1538
Current developments in the automotive industry such as electrification and consistent lightweight construction increasingly enable the application of active control systems for the further reduction of noise in vehicles. As different stochastic noise sources such as rolling and wind noise as well as noise radiated by the ventilation system are becoming more noticeable and as passive measures for NVH optimization tend to be heavy and construction-space intensive, current research activities focus on active reduction of noise caused by the latter mentioned sources. This paper illustrates the development, implementation and experimental investigation of an active noise control system integrated into the ventilation duct system of a passenger car.
Technical Paper

Evaluating the Effect of Two-Stage Turbocharger Configurations on the Perceived Vehicle Acceleration Using Numerical Simulation

2016-04-05
2016-01-1029
Charge boosting strategy plays an essential role in improving the power density of diesel engines while meeting stringent emissions regulations. In downsized two-stage turbocharged engines, turbocharger matching is critical to achieve desired boost pressure while maintaining sufficiently fast transient response. A numerical simulation model is developed to evaluate the effect of two-stage turbocharger configurations on the perceived vehicle acceleration. The simulation model developed in GT-SUITE consists of engine, drivetrain, and vehicle dynamics sub-models. A model-based turbocharger control logic is developed in MATLAB using an analytical compressor model and a mean-value engine model. The components of the two-stage turbocharging system evaluated in this study include a variable geometry turbine in the high-pressure stage, a compressor bypass valve in the low-pressure stage and an electrically assisted turbocharger in the low-pressure stage.
Technical Paper

Experimental Study on DGPS/RTK Based Path Following System Using Backstepping Control Methodology

2007-08-05
2007-01-3579
This paper mainly focuses on a lateral control law for pre-given path following which is developed by using the backstepping control design methodology. The position information of the vehicle is obtained by Real Time Kinematic DGPS, and the yaw rate and side-slip angle used in controller are estimated by Kalman estimator. To show the performance of the proposed controller under different speed and various path curvature conditions, the results are given through experiments which are executed on proving ground especially designed for high maneuvering test of which minimum radius of curvature is about 60 m.
Technical Paper

Improvement of Tire Development Process Through Study of Tire Test Procedure and Vehicle Correlation

2018-04-03
2018-01-1337
The tire is the vital element in vehicle dynamics, as its contact patch transmits all forces and moments to the ground (accelerating, braking, cornering, rolling).Over the recent decades tire development for passenger cars has been continuously improved and optimized in order to achieve a good overall vehicle performance in R&H that is in balance with all other tire performances (Wear, Durability, NVH, RR, Miles). This general development process has to be suitable for various vehicle types from regular passenger cars over eco-friendly hybrid or electric vehicles to high performance sport cars. The balance between Ride and Handling performance is further adjusted to local customer preferences that are usually distinguished by markets (US, EU, Asia). The tire development process, which is embedded in the overall vehicle development, is usually realized in a mutual collaboration between OEM and tire supplier.
Technical Paper

Modeling of Proportional Control Solenoid Valve for Automatic Transmission Using System Identification Theory

1999-03-01
1999-01-1061
As most of today's automatic transmissions adopt a electro-hydraulic control system, the role of electronically controlled solenoid valves occupies an important position. This paper presents a dynamic modelling technique of a proportional control solenoid valve(PCSV) for automatic transmissions in terms of the system identification theory, and analyzes the dynamic characteristics of the PCSV in frequency domain. Also we find that there are good matches between the nonlinear dynamic simulation results and the experimental data.
Technical Paper

Pre-Validation Method of Steering System by Using Hybrid Simulation

2020-04-14
2020-01-0645
In this study, the preliminary validation method of the steering system is constructed and the objective is to satisfy the target performance in the conceptual design stage for minimizing the problems after the detailed design. The first consideration about steering system is how to extract the reliable steering effort for parking. The tire model commonly used in MBD(Multi-Body Dynamics) has limited ability to represent deformations under heavy loads. Therefore, it is necessary to study adequate tire model to simulate the behavior due to the large deformation and friction between the ground and the tire. The two approaches related with F tire model and mathematical model are used. The second is how to extract each link’s load in the conceptual design stage. Until now, each link’s load could be derived only by actual vehicle test, and a durability analysis was performed using only pre-settled RIG test conditions.
X