Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

A Study of the Auxiliary Belt Drive System for Actual Fuel Saving

2017-03-28
2017-01-0898
The engine indicated torque is not delivered entirely to the wheels, because it is lowered by losses, such as the pumping, mechanical friction and front auxiliary power consumption. The front auxiliary belt drive system is a big power consumer-fueling and operating the various accessory devices, such as air conditioning compressor, electric alternator, and power steering pump. The standard fuel economy test does not consider the auxiliary driving torque when it is activated during the actual driving condition and it is considered a five-cycle correction factor only. Therefore, research on improving the front end auxiliary drive (FEAD) system is still relevant in the immediate future, particularly regarding the air conditioning compressor and the electric alternator. An exertion to minimize the auxiliary loss is much smaller than the sustained effort required to reduce engine friction loss.
Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Journal Article

An Improvement of Brake Squeal CAE Model Considering Dynamic Contact Pressure Distribution

2015-09-27
2015-01-2691
In the brake system, unevenly distributed disc-pad contact pressure not only leads to a falling-off in braking feeling due to uneven wear of brake pads, but also a main cause of system instability which leads to squeal noise. For this reason there have been several attempts to measure contact pressure distribution. However, only static pressure distribution has been measured in order to estimate the actual pressure distribution. In this study a new test method is designed to quantitatively measure dynamic contact pressure distribution between disc and pad in vehicle testing. The characteristics of dynamic contact pressure distribution are analyzed for various driving conditions and pad shape. Based on those results, CAE model was updated and found to be better in detecting propensity of brake squeal.
Technical Paper

Assessing the National Off-Cycle Benefits of 2-Layer HVAC Technology Using Dynamometer Testing and a National Simulation Framework

2023-04-11
2023-01-0942
Some CO2-reducing technologies have real-world benefits not captured by regulatory testing methods. This paper documents a two-layer heating, ventilation, and air-conditioning (HVAC) system that facilitates faster engine warmup through strategic increased air recirculation. The performance of this technology was assessed on a 2020 Hyundai Sonata. Empirical performance of the technology was obtained through dynamometer tests at Argonne National Laboratory. Performance of the vehicle across multiple cycles and cell ambient temperatures with the two-layer technology active and inactive indicated fuel consumption reduction in nearly all cases. A thermally sensitive powertrain model, the National Renewable Energy Laboratory’s FASTSim Hot, was calibrated and validated against vehicle testing data. The developed model included the engine, cabin, and HVAC system controls.
Technical Paper

Fuel Economy Improvement During Cold Start Using Recycled Exhaust Heat and Electrical Energy for Engine Oil and ATF Warm-Up

2014-04-01
2014-01-0674
A numerical study is conducted to investigate the effect of changing engine oil and automatic transmission fluid (ATF) temperatures on the fuel economy during warm-up period. The study also evaluates several fuel economy improving devices that reduce the warm-up period by utilizing recycled exhaust heat or an electric heater. A computer simulation model has been developed using a multi-domain 1-D commercial software and calibrated using test data from a passenger vehicle equipped with a 2.4 / 4-cylinder engine and a 6-speed automatic transmission. The model consists of sub-models for driver, vehicle, engine, automatic transmission, cooling system, engine oil circuit, ATF circuit, and electrical system. The model has demonstrated sufficient sensitivity to the changing engine oil and ATF temperatures during the cold start portion of the Federal Test Procedure (FTP) driving cycle that is used for the fuel economy evaluation.
Technical Paper

Improvement of Tire Development Process Through Study of Tire Test Procedure and Vehicle Correlation

2018-04-03
2018-01-1337
The tire is the vital element in vehicle dynamics, as its contact patch transmits all forces and moments to the ground (accelerating, braking, cornering, rolling).Over the recent decades tire development for passenger cars has been continuously improved and optimized in order to achieve a good overall vehicle performance in R&H that is in balance with all other tire performances (Wear, Durability, NVH, RR, Miles). This general development process has to be suitable for various vehicle types from regular passenger cars over eco-friendly hybrid or electric vehicles to high performance sport cars. The balance between Ride and Handling performance is further adjusted to local customer preferences that are usually distinguished by markets (US, EU, Asia). The tire development process, which is embedded in the overall vehicle development, is usually realized in a mutual collaboration between OEM and tire supplier.
Technical Paper

Model-Based Fuel Economy Technology Assessment

2017-03-28
2017-01-0532
Many leading companies in the automotive industry have been putting tremendous amount of efforts into developing new designs and technologies to make their products more energy efficient. It is straightforward to evaluate the fuel economy benefit of an individual technology in specific systems and components. However, when multiple technologies are combined and integrated into a whole vehicle, estimating the impact without building and testing an actual vehicle becomes very complex, because the efficiency gains from individual components do not simply add up. In an early concept phase, a projection of fuel efficiency benefits from new technologies will be extremely useful; but in many cases, the outlook has to rely on engineer’s insight since it is impractical to run tests for all possible technology combinations.
Technical Paper

Prediction and Optimization of Blocked Force Changes of a Suspension System Using Bush Stiffness Injection Method

2022-06-15
2022-01-0956
Automotive OEMs have introduced a new development paradigm, modular architecture development, to improve diversity quality and production efficiency. It needs solid fundamentals of system-based performance evaluation and development for each system level and single component level. When it comes to NVH development, it is challenging to realize the modular concept because noise and vibration should be transferred through various transfer path consisting of many parts and systems, which interact with each other. It is challenging for a single system of interest to be evaluated independently of the adjacent parts and environments. In this study, a new system-based development process for a vehicle suspension was investigated by applying blocked force theory and FRF-based dynamic substructuring. The objective is to determine the better dynamic stiffness distribution of many bushes installed in a suspension system in the frequency range corresponding to road noise.
Technical Paper

Test Method Development and Understanding of Filter Ring-off-Cracks in a Catalyzed Silicon Carbide (SiC) Diesel Particulate Filter System Design

2008-04-14
2008-01-0765
As the use of diesel engines increases in the transportation industry and emission regulations tighten, the implementation of diesel particulate filter systems has expanded. There are many challenges associated with the design and development of these systems. Some of the key robustness parameters include regeneration, efficiency, fuel penalty, engine performance, and durability. One component of durability in a diesel particulate filter (DPF) system is the filter's ability to resist ring-off-cracking (ROC). ROC is described as a crack caused primarily by thermal gradients, differentials, and the resulting stresses within the DPF that exceed its internal strength. These cracks usually run perpendicular to the substrate flow axis and typically result in the breaking of the substrate into separate halves.
Technical Paper

Test Method for Operational Deflection Shape Analysis of Squealing Brake Disc in Dynamic Condition

2012-09-17
2012-01-1807
In order to reduce brake squeal noise, it is important to identify operational deflection shape (ODS) of brake disc while squeal arises. However, in the conventional modal analysis and optical measurement, it is only able to identify limited ODS because of the technical limits. This paper details the test method to identify ODS in radial and tangential as well as axial direction of a brake disc in driving condition. Vibrational signal of a rotating disc was obtained by triaxial accelerometer installed to solid type discs/cooling fins of ventilated type discs, then ODS of disc were analyzed through digital signal processing.
Technical Paper

The Studies of Crash Characteristics According to Chassis Frame Types

2001-03-05
2001-01-0119
There are various tests for evaluating how well a vehicle protects people in a crash. The frontal and offset crash test is one of the most important tests that evaluate the crashworthiness of a vehicle. In this paper, we will discuss some parameters that have a major effect on the amount and pattern of intrusion into the occupant compartment during the frontal and offset crash test. And the characteristics of impact are described according to the types of chassis frame, T-type frame and #-type frame. The T-frame has worse performance than #-frame in crash, So it is necessary to make stronger dash compartments in T-frame. We will design a vehicle which has optimized body, chassis structure and material selections by controlling major parameters of frontal crash performance.
Technical Paper

Tuning of Suspension Parameters to Improve Dynamic Performance of Passenger Car

1987-11-08
871179
The purpose of this paper is an attempt to make a good compromise between ride and handling without deteriorating each other. Compromise between ride and handling has been a problem for suspension designer. Attempts are made by varing suspension parameters. Effects of each combination has been tested with basic ride and handling test methods. For ride to maintain a constant natural frequency through all load range was a primary target. And for handling to get adequate roll angle at 0.5g lateral acceleration was a target. In conclusion, combination of polyurethane suspension bump and normal rear spring was proved to be able to provide the best compromise, low cost, light weight and better performance. This also showed polyurethane bumper could carry out spring aids successfully.
X