Refine Your Search

Topic

Author

Search Results

Technical Paper

0D/3D Simulations of Combustion in Gasoline Engines Operated with Multiple Spark Plug Technology

2015-04-14
2015-01-1243
A simulation method is presented for the analysis of combustion in spark ignition (SI) engines operated at elevated exhaust gas recirculation (EGR) level and employing multiple spark plug technology. The modeling is based on a zero-dimensional (0D) stochastic reactor model for SI engines (SI-SRM). The model is built on a probability density function (PDF) approach for turbulent reactive flows that enables for detailed chemistry consideration. Calculations were carried out for one, two, and three spark plugs. Capability of the SI-SRM to simulate engines with multiple spark plug (multiple ignitions) systems has been verified by comparison to the results from a three-dimensional (3D) computational fluid dynamics (CFD) model. Numerical simulations were carried for part load operating points with 12.5%, 20%, and 25% of EGR. At high load, the engine was operated at knock limit with 0%, and 20% of EGR and different inlet valve closure timing.
Technical Paper

A Highly Efficient Simulation-Based Calibration Method Exemplified by the Charge Control

2005-04-11
2005-01-0052
A physically based simulation program developed by IAV makes a notable reduction of test bed measurements for the calibration of the cylinder charge calculation possible. Based upon geometric engine parameters and camshaft profiles, the cylinder charge is calculated from thermodynamic relationships taking into account the contribution of residual gas. After successful engine-specific calibration of the simulation model on the basis of a reduced set of test bed measurements, it is possible to calculate the cylinder air mass over the entire range of valve timing settings and operating points (engine load and speed). The simulation-generated “virtual” measurements can then be used for calibration of the control unit software over the entire operating range.
Technical Paper

A New Hardware-Assisted Inlet Port Development Process for Diesel Engines Using Doppler Global Velocimetry

2005-04-11
2005-01-0640
As more virtual product development is integrated into the mass-production development process and overall development times are shortened, efficient intake-port design requires closer cooperation between design, simulation and test engineers. Doppler Global Velocimetry (DGV) has become an important link in the overall intake-port development process as it provides 3D-vector fields of flow velocity. Hence, it can be used to make direct comparisons with 3D-CFD-simulation results. The present paper describes the hardware-assisted inlet port development process for diesel engines, the cooperation among port design, 3D-CFD-simulation with the creation of alternative geometries and DGV flow-measurement of preferred variants with their capability of checking and improving simulation results.
Technical Paper

A Phenomenological Homogenization Model Considering Direct Fuel Injection and EGR for SI Engines

2020-04-14
2020-01-0576
As a consequence of reduced fuel consumption, direct injection gasoline engines have already prevailed against port fuel injection. However, in-cylinder fuel homogenization strongly depends on charge motion and injection strategies and can be challenging due to the reduced available time for mixture formation. An insufficient homogenization has generally a negative impact on the combustion and therefore also on efficiency and emissions. In order to reach the targets of the intensified CO2 emission reduction, further increase in efficiency of SI engines is essential. In this connection, 0D/1D simulation is a fundamental tool due to its application area in an early stage of development and its relatively low computational costs. Certainly, inhomogeneities are still not considered in quasi dimensional combustion models because the prediction of mixture formation is not included in the state of the art 0D/1D simulation.
Journal Article

Achieving Very Low PN Emissions with an Advanced Multi-Hole Injector Functionality and Adapted Spray Targeting Under High Fuel Pressure Conditions

2014-10-13
2014-01-2605
In the near future, emissions legislation will become more and more restrictive for direct injection SI engines by adopting a stringent limitation of particulate number emissions in late 2017. In order to cope with the combustion system related challenges coming along with the introduction of this new standard, Hitachi Automotive Systems Ltd., Hitachi Europe GmbH and IAV GmbH work collaboratively on demonstrating technology that allows to satisfy EU6c emissions limitations by application of Hitachi components dedicated to high pressure injection (1). This paper sets out to describe both the capabilities of a new high pressure fuel system improving droplet atomization and consequently mixture homogeneity as well as the process of utilizing the technology during the development of a demonstrator vehicle called DemoCar. The Hitachi system consists of a fuel pump and injectors operating under a fuel pressure of 30 MPa.
Technical Paper

Advanced Turbocharger Model for 1D ICE Simulation - Part I

2013-04-08
2013-01-0581
Standard compressor and turbine maps obtained from steady-state test bench measurements are not sufficient for assessing transient turbocharger behavior. This also makes them inappropriate for gauging combustion-engine response and fuel consumption. Nor do they allow for the widely differing operating conditions which, apart from aerodynamics, have a major influence on heat transfer and turbocharger efficiency. This paper looks at a more complex approach of modeling the turbocharger as well developing appropriate measurement methods (“advanced turbocharger model”). This includes non-destructive measurements under various heat transfer conditions to define the turbocharger's adiabatic behavior needed to describe charge-air pressure increase in the compressor and engine exhaust gas backpressure from the turbine for transient engine operation.
Technical Paper

Advantages of Diesel Engine Control Using In-Cylinder Pressure Information for Closed Loop Control

2003-03-03
2003-01-0364
Increasing emissions regulations, diagnostics capability, and other demands in vehicle refinement, have led to the need for increasingly complex engine control systems. These demands have led to in-cylinder combustion control, especially for the diesel engine. Diesel engine combustion relies heavily on the auto-ignition process. Therefore accurate control of this process is important and will become even more important for HCCI-engines. This paper discusses the configuration of a diesel engine for in-cylinder combustion control. It describes the digital evaluation of the cylinder pressure signal and the computation of the physical parameters necessary for proper combustion analysis, along with methods for using the calculated combustion parameter for engine control. The paper demonstrates the advantages of electronic engine control combined with in-cylinder pressure information. The paper also addresses some of the future challenges of engine control.
Technical Paper

Air System Control for Advanced Diesel Engines

2007-04-16
2007-01-0970
In order to satisfy environmental regulations while maintaining strong performance and excellent fuel economy, advanced diesel engines are employing sophisticated air breathing systems. These include high pressure and low pressure EGR (Hybrid EGR), intake and exhaust throttling, and variable turbine geometry systems. In order to optimize the performance of these sub-systems, system level controls are necessary. This paper presents the design, benefits and test results of a model-based air system controller applied to an automotive diesel engine.
Technical Paper

Boost and EGR System for the Highly Premixed Diesel Combustion

2006-04-03
2006-01-0204
Advanced Diesel combustion strategies with the focus on the reduction of NOx and PM emission as well as fuel consumption need an increase of the EGR rate and therefore improved boost concepts. The suppression of the nitrogen oxide build up requires changes in the charge condition (charge temperature, EGR rate), which have to be realized by the gas exchange system. The gas exchange system of IAV's ADCS test engine was dimensioned with the help of the engine process simulation software THEMOS®. This paper shows simulation and test bench results of the potential to increase the EGR rate and the charge density at stationary and transient operation. The increase of both EGR rate and boost pressure, as well as the need for a better control of transient operation leads to greater requirements for the engine control system. The potential of the engine and its control system for an application to a demo vehicle will be assessed.
Technical Paper

Calibration of Torque Structure and Charge Control System for SI Engines Based on Physical Simulation Models

2006-04-03
2006-01-0854
A physics-based simulation program developed by IAV is used to calibrate the torque structure and cylinder charge calculation in the electronic control unit of SI engines. The model calculates both the charge cycle and combustion phase based on flow mechanics and a fractal combustion model. Once the air mass in the charge cycle has been computed, a fractal combustion model is used for the ongoing calculation of cylinder pressure and temperature. The progression of cylinder pressure over the high and low-pressure phases also provides information on engine torque. Following the engine-specific calibration of the model using elemental geometric information and reduced test bench measurements, the physical engine properties can be simulated over the operating cycle. The calibrated model allows simulations to be carried out at all operating points and the results to be treated as virtual test bench measurements.
Technical Paper

Cold Start Simulation and Test on DISI Engines Utilizing a Multi-Zone Vaporization Approach

2012-04-16
2012-01-0402
Recent years have witnessed a dramatic increase in global ethanol production, while cellulosic feedstock or the algae-based production approach make more sustainable ethanol production foreseeable in many countries. The ethanol produced will increasingly penetrate the markets not only as blending component, but also as main fuel component, boosting demand for flex-fuel vehicles. One of the main challenges for flex-fuel vehicles is the cold start due to the poor vapor pressure of ethanol. This is detrimental to starting capability in DISI engines in particular, with increased cylinder wall wetting causing higher oil dilution. The most efficient solution for DISI engines is a smart injection strategy, enabling fuel vaporization during injection in the compression stroke. But this requires optimum injection parameters such as injection timing, split ratio and rail pressure.
Technical Paper

Comparison of Different Transient Air Charge Models

2005-04-11
2005-01-0051
The correct estimation of the air charge is crucial for the control of gasoline engines. This paper introduces an air charge estimation based on both physical and statistical models. For the physical model, an investigation was made to determine if the assumption of an isothermal process in the intake manifold is too strict and should be weakened to an assumption of an adiabatic process. For the adaptation of the statistical models, the Design of Experiments (DoE) method is used. The DoE method can shorten test expenses and calibration time significantly. The resulting model was tested with a 2-liter gasoline engine.
Technical Paper

EGR Cooler Fouling Reduction: A New Method for Assessment in Early Engine Development Phase

2022-03-29
2022-01-0589
High pressure EGR provides NOx emission reduction even at low exhaust temperatures. To maintain a safe EGR system operation over a required lifetime, the EGR cooler fouling must not exceed an allowable level, even if the engine is operated under worst-case conditions. A reliable fouling simulation model represents a valuable tool in the engine development process, which validates operating and calibration strategies regarding fouling tendency, helping to avoid fouling issues in a late development phase close to series production. Long-chained hydrocarbons in the exhaust gas essentially impact the fouling layer formation. Therefore, a simulation model requires reliable input data especially regarding mass flow of long-chained hydrocarbons transported into the cooler. There is a huge number of different hydrocarbon species in the exhaust gas, but their individual concentration typically is very low, close to the detection limit of standard in-situ measurement equipment like GC-MS.
Technical Paper

Effects of Charge Motion Characteristics on Engine Variables such as Emission Behavior and Efficiency

2007-04-16
2007-01-0640
Mixture formation in the combustion chamber is of paramount significance for diesel combustion processes. Particularly in inhomogeneous combustion processes with internal mixture formation, the course of combustion and composition of combustion products are heavily influenced by charge motion and material transport during the compression phase and during combustion itself. Charge motion is normally quantified in steady-state flow testing. This model-based test takes place under idealized conditions. This means that with a permanently open valve and constant pressure differential over the inlet port, a steady-state flow of air is established in the simulated cylinder. The influence of piston movement is neglected. The test delivers integral characteristic flow figures, such as swirl number, flow number and tumble number.
Technical Paper

Fundamental Investigations about Heated Fuel Injection on SI Engines

2018-05-30
2018-37-0003
Mixture formation in gasoline direct-injection engines is largely determined by the quality of injection. Injection systems with a wide range of layouts are used today in enhancing spray quality. As parameters, the pressure and temperature of injected fuel play a crucial part in defining quality. The effect increasing pressure has on the quality of spray is basically known. So are ways of applying this process to gasoline fuel. The effect of massively increasing the temperature of injected fuel - to the point of reaching supercritical conditions - in contrast, is not known in any detail. For this reason, the following paper focuses attention on examining the fundamental influence of increasing fuel temperature from 25 °C to 450 °C on the spray behavior of a high-pressure injector with a GDI nozzle. Combining relevant levels of pressure and temperature, discussion also turns to supercritical fuel conditions and their effects on spray behavior.
Technical Paper

Gane Fuel - Introduction of an Innovative, Carbon-Neutral and Low Emission Fuel for HD CI Engines

2021-09-21
2021-01-1198
The newest legislative trends enforce a significant decrease in CO2 emissions for commercial vehicles. For instance, in Europe a drop in fleet consumption of 15% and 30% is set as target by the regulation by 2025 and 2030. The use of carbon-neutral fuels offers possibilities regarding net-zero CO2 emissions - although not yet considered by the rules. Another challenging aspect is the drastic tightening of NOx emissions limits for future legislations, which is approved or being discussed both for the United States and for the EU. The current work describes the potentials of an innovative fuel, marketed as Gane fuel regarding performance, efficiency and emission behavior. First, the properties of the developed fuel are described: Gane is made from methanol blended with water and is tailored for diffusive combustion. The fuel blending is so defined to fulfill the combustion requirements.
Technical Paper

Gasoline HCCI/CAI on a Four-Cylinder Test Bench and Vehicle Engine - Results and Conclusions for the Next Investigation Steps

2010-05-05
2010-01-1488
Internal combustion engines with lean homogeneous charge and auto-ignition combustion of gasoline fuels have the capability to significantly reduce fuel consumption and realize ultra-low engine-out NOx emissions. Group research of Volkswagen AG has therefore defined the Gasoline Compression Ignition combustion (GCI®) concept. A detailed investigation of this novel combustion process has been carried out on test bench engines and test vehicles by group research of Volkswagen AG and IAV GmbH Gifhorn. Experimental results confirm the theoretically expected potential for improved efficiency and emissions behavior. Volkswagen AG and IAV GmbH will utilize a highly flexible externally supercharged variable valve train (VVT) engine for future investigations to extend the understanding of gas exchange and EGR strategy as well as the boost demands of gasoline auto-ignition combustion processes.
Technical Paper

High Efficiency HD Hydrogen Combustion Engines: Improvement Potentials for Future Regulations

2022-03-29
2022-01-0477
Hydrogen engines offer the possibility of a carbon neutral transportation - a focal point of current propulsion development activities especially for EU and US future concepts. From today's point of view, hydrogen can play an important role in this regard as it is a carbon-free fuel, no CO2 emissions are produced during its combustion process. Besides, it can be well used for lean burn combustion leading to very low NOx emissions, a key benefit in combination with an optimized after-treatment system for future ultra-low NOx legislations of heavy-duty (HD) engines. Comprehensive investigations using experimental tests and model-based development approach are performed using a six cylinder HD hydrogen engine featuring PFI (port fuel injection) aiming the definition of a high efficiency hydrogen engine concept.
Technical Paper

Holistic Evaluation of CO2 Saving Potentials for New Degrees of Freedom in SI Engine Process Control Based on Physical Simulations

2018-09-10
2018-01-1654
Specific shifting of load points is an important approach in order to reduce the fuel consumption of gasoline engines. A potential measure is cylinder deactivation, which is used as a study example. Currently CO2 savings of new concepts are evaluated by dynamic cycles simulations. The fuel consumption during driving cycles is calculated based on consumption-optimized steady-state engine maps. Discrete load point shifts occur as shifts within maps. For reasons of comfort shifts require neutral torque. The work of deactivated cylinders must be compensated by active cylinders within one working cycle. Due to the larger time constant of the air path the air charge must be increased or decreased in order to deactivate or activate cylinders without affecting the torque. A working-cycle-resolved, continuously variable parameter is prerequisite for process control. Manipulation of ignition timing enables a reduction of efficiency and gained work.
Technical Paper

Homogeneous Diesel Combustion with External Mixture Formation by a Cool Flame Vaporizer

2006-10-16
2006-01-3323
The homogeneous Diesel combustion is a way to effect a soot and nitrogen oxide (NOx) free Diesel engine operation. Using direct injection of Diesel fuel, the mixture typically ignites before it is fully homogenized. In this study a homogeneous mixture is prepared outside of the combustion chamber by a Cool Flame Vaporizer. At first the specification of the vaporizer is given in this paper. To determine the composition of the vaporizer gas an analysis using gas chromatography/mass spectroscopy (GC/MS) was made. The results give an idea of the effects on engine combustion. Followed by, the vaporizer was adapted to a single-cylinder Diesel engine. To adapt the engine's configuration regarding compression ratio and inlet temperature range a zero dimensional engine process simulation software was utilized. The engine was run in different operating modes.
X