Refine Your Search



Search Results

Journal Article

A 0D Phenomenological Approach to Model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry

More and more stringent restrictions concerning the pollutant emissions of ICE (Internal Combustion Engines) constitute a major challenge for the automotive industry. New combustion strategies such as LTC (Low Temperature Combustion), PCCI (Premixed Controlled Compression Ignition) or HCCI (Homogeneous Charge Compression Ignition) are promising solutions to achieve the imposed emission standards. They permit low NOx and soot emissions via a lean and highly diluted combustion regime, thus assuring low combustion temperatures. In next generation of ICE, new technologies allow the implementation of complex injection strategies in order to optimize the combustion process. This requires the creation of numerical tools adapted to these new challenges. This paper presents a 0D Diesel HCCI combustion model based on a physical 3D CFD (Computational Fluid Dynamics) approach.
Technical Paper

A 3WCC Global Kinetic Model: A Calibration Method Using Laboratory Scale and Engine Test Bench Experiments

A 3 way catalytic converter (3WCC) model based on a global kinetic model was developed and validated against laboratory scale and engine test bench experiments. Various equivalence ratios and temperatures were tested. A methodology was finalized and applied to calibrate the kinetic constants. Laboratory scale experiments were first used to characterize the reaction mechanism during light-off, including the way reduction and oxidation reactions begin and compete with each other when temperature increases. The numerical results are in good agreement with the laboratory scale light-off results. Also, when adapted to simulate the engine test bench experiments, the model is able to correctly reproduce both the light-off tests and the 3WCC conversion efficiency evolution versus equivalence ratio. A calibration method in two steps was thus established and successfully used. The combination of modeling with experimental work appeared to be a powerful tool to determine the reaction mechanism.
Journal Article

A Comparison of Combustion and Emissions Behaviour in Optical and Metal Single-Cylinder Diesel Engines

Single cylinder optical engines are used for internal combustion (IC) engine research as they allow for the application of qualitative and quantitative non-intrusive, diagnostic techniques to study in-cylinder flow, mixing, combustion and emissions phenomena. Such experimental data is not only important for the validation of computational models but can also provide a detailed insight into the physical processes occurring in-cylinder which is useful for the further development of new combustion strategies such as gasoline homogeneous charge compression ignition (HCCI) and Diesel low temperature combustion (LTC). In this context, it is therefore important to ensure that the performance of optical engines is comparable to standard all-metal engines. A comparison of optical and all-metal engine combustion and emissions performance was performed within the present study.
Technical Paper

A Detailed Well to Wheel Analysis of CNG Compared to Diesel Oil and Gasoline for the French and the European Markets

Pollutants emissions from transportation have become a major focus of environmental concerns in the last decades. Many alternative fuels are under consideration, among which Natural Gas as fossil resource offering an advantageous potential to reduce local emissions. The European Commission has set an objective of 10% of Natural Gas consumption for the transport sector by 2020. In a sustainable development view, both vehicle emissions and energy supply chain analysis from well to wheel must be addressed. Even if the main focus today is on CO2 emissions, it is interesting to evaluate the pollutant emissions of the whole Well to Wheel chain. Besides, as the potential of reducing pollutant emissions of vehicle (due to the improvement of engines and severization of norms), looking at pollutant emissions of the Well to Tank part of the chain could show the possible further improvements. Former studies exist, comparing Natural Gas to conventional and non conventional fuels.
Technical Paper

A New 0D Approach for Diesel Combustion Modeling Coupling Probability Density Function with Complex Chemistry

The model presented in this paper is an original contribution for two main mechanisms involved in a Diesel combustion chamber: the micro-mixing and the combustion heat release. The micro-mixing phenomenon is modelled thanks to the presumed probability density function theory adapted to the 0D combustion modeling issues in order to take into account the stratification of air / fuel ratio around the spray. The combustion heat release is obtained from complex chemistry look-up tables. These tables are issued from a dedicated use of the Flame Prolongation of ILDM theory and allow a large range of combustion conditions since it includes high EGR rates. Moreover, the spray model including evaporation and turbulent macro-mixing is based on the well-known Siebers theory.
Technical Paper

A Simulation Tool for Vehicle Emissions, Consumption and Performance Analysis - Applications to DPF Modeling and DID Turbocharged Engine Control Design

Facing the stringent constraints on fuel consumption and pollutant emissions, the automotive manufacturers have to produce vehicles with an increasing number of complex systems working together. Numerical simulation for the system design, set-up and control strategies, helps to reduce the development cycle and the global cost. Existing simulation tools usually do not address, with a high level of details, the various physical domains involved in a vehicle powertrain. To overcome this challenge, IFP and IMAGINE, settled a partnership to develop detailed simulation tools dedicated to performance, consumption and emissions for conventional and hybrid vehicles [1]. These tools are integrated in a multi-domain simulation platform (AMESim®) where several levels of detail can be easily reached for each sub-element.
Technical Paper

A Study of Combustion Structure and Implications on Post-Oxidation Under Homogeneous and Stratified Operation in a DISI Engine

An experimental investigation into the structure and flame propagation characteristics of stratified and homogeneous combustion has been performed in an optically-accessible, direct-injection spark ignition (DISI) engine using OH planar laser-induced fluorescence (PLIF) imaging. Homogeneous and stratified operation was achieved by employing either early or late injection timing strategies during the intake or compression stroke respectively. Planar LIF OH images obtained revealed that for stratified operation, the 3D structure of the combustion zone is highly inhomogeneous and is predominantly due to high fuel concentration gradients which are formed as a result of local fuel mixture stratification. The images reveal a combustion structure which suggests that the flame propagation pathway is ultimately determined by the presence of these local fuel mixture inhomogeneities.
Technical Paper

A Study of Mixture Formation in Direct Injection Diesel Like Conditions Using Quantitative Fuel Concentration Visualizations in a Gaseous Fuel Jet

Quantitative fuel concentration visualizations are carried out to study the mixing process between fuel and air in Direct Injection (DI) Diesel like conditions, and generate high quality data for the validation of mixing models. In order to avoid the particular complication connected with fuel droplets, a gaseous fuel jet is investigated. Measurements are performed in a high-pressure chamber that can provide conditions similar to those in a diesel engine. A gas injection system able to perform injections in a high-pressure chamber with a good control of the boundary conditions is chosen and characterized. Mass flow rates typical of DI Diesel injection are reproduced. A Laser Induced Fluorescence technique requiring the mixing at high pressure of the fluorescent tracer, biacetyl, with the gaseous fuel, methane, is developed. This experimental technique is able to provide quantitative measurement of fuel concentration in high-pressure jets.
Technical Paper

AMT Control for a Mild-Hybrid Urban Vehicle with a Downsized Turbo-Charged CNG Engine

Compressed natural gas (CNG) is considered as one of the most promising alternative fuels for transportation due to its ability to reduce greenhouse gas emissions (CO2, in particular) and its abundance. An earlier study from IFP has shown that CNG has a considerable potential when used as a fuel for a dedicated downsized turbo-charged SI engine on a small urban vehicle. To take further advantage of CNG assets, this approach can be profitably extended by adding a small secondary (electrical) power source to the CNG engine, thus hybridizing the powertrain. This is precisely the focus of the new IFP project, VEHGAN, which aims to develop a mild-hybrid CNG prototype vehicle based on a MCC smart car equipped with a reversible starter-alternator and ultra-capacitors (Valeo Starter Alternator Reversible System, StARS).
Journal Article

Advanced Injection Strategies for Controlling Low-Temperature Diesel Combustion and Emissions

The simultaneous reduction of engine-out nitrogen oxide (NOx) and particulate emissions via low-temperature combustion (LTC) strategies for compression-ignition engines is generally achieved via the use of high levels of exhaust gas recirculation (EGR). High EGR rates not only result in a drastic reduction of combustion temperatures to mitigate thermal NOx formation but also increases the level of pre-mixing thereby limiting particulate (soot) formation. However, highly pre-mixed combustion strategies such as LTC are usually limited at higher loads by excessively high heat release rates leading to unacceptable levels of combustion noise and particulate emissions. Further increasing the level of charge dilution (via EGR) can help to reduce combustion noise but maximum EGR rates are ultimately restricted by turbocharger and EGR path technologies.
Technical Paper

Advanced Tools for Analysis of Gasoline Direct Injection Engines

A methodology which uses simultaneously 3D calculations and advanced experimental tools has been developed in order to characterize air-fuel mixing and combustion of gasoline direct injection engines at every stage of development. The analysis of Mitsubishi GDI engine has been carried out in order to validate this approach. The experimental tools used in this analysis underline the great cycle-to-cycle variability and show that the air-fuel ratio variations at spark plug correlate closely with the fluctuations of combustion starting and development. Despite this variability, average measurements are reproducible and in good agreement with 3D computational results obtained with KIVA-MB code. The common use of both kinds of tools allows to get a very fine understanding of Mitsubishi wall-guided concept.
Technical Paper

An Unstructured Parallel Solver for Engine Intake and Combustion Stroke Simulation

KIFP, an hexahedral unstructured version of KIVA-MB (KMB), the current CFD code for engines at IFP, has been developed. Based on KIVA algorithms (finite volume on staggered grids, time-splitting, SIMPLE loop, sub-cycled advection…), the new solver has been built step by step with a strong control on the numerical results. This paper shows the different phases of this work. The numerical approaches and developments are discussed. Several moving grids algorithms have been tested without the flow and results are presented. The flow with its physical properties has been implemented step by step. Some academic examples are shown and compared with KMB or analytical results, like scalar advection or multi-species diffusion. Better precision and convergence in the physical fields are observed. Iterative loops and advective sub-cycles are also reduced thanks to the unstructured formalism. Super-scalar machines being widely used and developed, KIFP is dedicated for them.
Journal Article

Analysis of Combustion Process in Cold Operation with a Low Compression Ratio Diesel Engine

Future emissions standards for passenger cars require a reduction of NOx (nitrogen oxide) and CO₂ (carbon dioxide) emissions of diesel engines. One of the ways to reach this challenge while keeping other emissions under control (CO: carbon monoxide, HC: unburned hydrocarbons and particulates) is to reduce the volumetric compression ratio (CR). Nevertheless complications appear with this CR reduction, notably during very cold operation: start and idle. These complications justify intensifying the work in this area. Investigations were led on a real 4-cylinder diesel 13.7:1 CR engine, using complementary tools: experimental tests, in-cylinder visualizations and CFD (Computational Fluid Dynamics) calculations. In previous papers, the way the Main combustion takes place according to Pilot combustion behavior was highlighted. This paper, presents an in-depth study of mixture preparation and the subsequent combustion process.
Technical Paper

Analysis of HC Emissions on Single Cylinder During Transient Conditions

For studying simultaneously and early in the development process the effects of engine design parameters and of control strategies on HC emissions, a methodology has been set up to reproduce on a gasoline single-cylinder engine the beginning of MVEG cycle. This methodology uses different fuels and analysis tools to assess the HC sources. Oil and water are heated to follow the thermal behavior of a multi cylinder engine. A fast prototyping system is used to control the engine. Special attention has been paid to take into account the acoustic effect on the air feeding. The main tendencies observed in stabilized conditions are similar to transient test conditions with GDI engine. Wall wetting appears as the main source of HC emission in case of direct injection. Transient effects are especially sensitive during cold conditions.
Journal Article

Cold Operation with Optical and Numerical Investigations on a Low Compression Ratio Diesel Engine

With a high thermal efficiency and low CO2 (carbon dioxide) emissions, Diesel engines become leader of transport market. However, the exhaust-gas legislation evolution leads to a drastic reduction of NOx (nitrogen oxide) standards with very low particulate, HC (unburned hydrocarbons) and CO (carbon monoxide) emissions, while combustion noise and fuel consumption must be kept under control. The reduction of the volumetric compression ratio (CR) is a key factor to reach this challenge, but it is today limited by the capabilities to provide acceptable performances during very cold operation: start and idle below −10°C. This paper focuses on the understanding of the main parameter’s impacts on cold operation. Effects of parameters like hardware configuration and calibration optimization are investigated on a real 4 cylinder Diesel 14:1 CR engine, with a combination of specific advanced tools.
Journal Article

Cold Start on Diesel Engine: Is Low Compression Ratio Compatible with Cold Start Requirements?

Future emission standards for Diesel engine will require a drastic reduction of engine-out NOx emissions with very low level of particulate matter (PM), HC and CO, and keeping under control fuel consumption and combustion noise. One of the most promising way to reach this challenge is to reduce compression ratio (CR). A stringent limitation of reducing Diesel CR is currently cold start requirements. Indeed, reduction of ambient temperature leads to penalties in fuel vaporization and auto ignition capabilities, even more at very low temperature (-20°C and below). In this paper, we present the work operated on an HSDI Common rail Diesel 4-cyl engine in three area: engine tests till very low temperature (down to -25°C); in cylinder imaging (videoscope) and CFD code development for cold start operation. First, combustion chamber is adapted in order to reach low compression ratio (CR 13.7:1).
Journal Article

Cold Start on Diesel Engines: Effect of Fuel Characteristics

Faced with the need to reduce greenhouse gas emissions, diesel engines present the advantage of having low CO₂ emission levels compared to spark-ignited engines. Nevertheless, diesel engines still suffer from the fact that they emit pollutants and, particularly nitrogen oxides (NOx) and particulates (PM). One of the most promising ways to meet this challenge is to reduce the compression ratio (CR). However a current limitation in reducing the diesel CR is cold start requirements. In this context, the fuel characteristics such as the cetane number, which represents ignition, and volatility could impact cold start. That is why a matrix of 8 fuels was tested. The cetane number ranges from 47.3 to 70.9 and the volatility, represented by the temperature necessary to distillate 5% of the product (T5%), ranges from 173 to 198°C. The engine tests were carried out at -25°C, on a common rail 4-cylinder diesel engine.
Technical Paper

Comparison and Coupling of Homogeneous Reactor and Flamelet Library Soot Modeling Approaches for Diesel Combustion

Soot models applied to Diesel combustion can be grouped into two classes, one based on the flamelet concept and the other based on the homogeneous reactor concept. The first assumes that the laminar diffusion flame structure of the reaction zone, in the mixture fraction space, is preserved while convected and strained by the turbulent flow. The second assumes that the properties of the reaction zone are locally homogeneous. Thus the aerodynamic and chemical reaction interactions are modeled with opposing assumptions: the first assumes fast chemistry, the second fast mixing. In this work, we first compare results obtained with a flamelet library approach to those with a homogeneous reactor approach. Recognizing that both types of models apply in different regions of Diesel combustion, we then propose a new approach for soot modeling in which they are coupled.
Technical Paper

Comparison between the exhaust particles mass determined by the European regulatory gravimetric method and the mass estimated by ELPI

Electrical Low Pressure Impactor (ELPI) is often employed to measure the particle number and size distribution of internal combustion engines exhaust gas. If appropriate values of particle density are available, the particle mass can be estimated by this method. Exhaust particles of three Euro3 passenger cars (one gasoline operating under stoichiometric conditions, one Diesel and one Diesel equipped with Diesel Particulate Filter) are measured using the current European regulations (gravimetric method on the are New European Driving Cycle) and estimated by ELPI particle number and size distribution. Different values for particle density are used to estimate the particle mass using all ELPI stages or only some of them. The results show that the particle mass estimated by ELPI is well correlated with the mass determined by filters for PM emissions higher than 0.025 g/km. This correlation is not very good at lower emissions.
Journal Article

Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities

Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models that will be used to optimize future engine designs. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but because of the uniqueness of each facility, there are uncertainties about their operation. For this paper, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP.