Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

A 0D Phenomenological Model Using Detailed Tabulated Chemistry Methods to Predict Diesel Combustion Heat Release and Pollutant Emissions

2011-04-12
2011-01-0847
In the last two decades, piston engine specifications have deeply evolved. Indeed, new challenges nowadays concern the reduction of pollutant emissions (EURO regulations) and CO2 emissions. To satisfy these new requirements, powertrains have become very complex systems including a large number of high technology components (high pressure injectors, turbocharger, Exhaust Gas Recirculation (EGR) loop, after-treatment devices...). In this context, the engine control plays a major role in the development and the optimization of powertrains. Few years ago, engine control strategies were mainly defined by experiments on engine test benches. This approach is not adapted to the complexity of future engines: on the one hand, tests are too expensive and on the other hand, they do not give much information to understand interactions between components. Today, a promising alternative to tests may be the use of 0D/1D simulation tools.
Technical Paper

A Phenomenological Combustion Model Including In-Cylinder Pollutants To Support Engine Control Optimisation Under Transient Conditions

2011-08-30
2011-01-1837
Regulations in terms of pollutant emissions are becoming more and more constraining. The car manufacturers need to adopt a global optimisation approach of engine and exhaust after-treatment systems. An engine architecture definition coupled to an adapted control strategy seem to be an ideal way to address this issue. The problem is particularly complex, considering the trade off between the drivability which must be maintained, the reduction of the in-cylinder pollutant emissions, the reduction of the fuel consumption and the optimisation of the operating conditions to reach high conversion efficiencies via exhaust gas after-treatment systems. Sophisticated control strategies and models can only be developed with a complete understanding of the physical phenomena occurring in the combustion chamber, thanks to experimental measurements and engine system simulations.
Technical Paper

Aerodynamic Flow Simulation in an Internal Combustion Engine Using the Smoothed Particle Hydrodynamics Method

2011-09-11
2011-24-0029
The numerical simulation of internal aerodynamic of automotive combustion chamber is characterised by complex displacements of moving elements (piston, intake/exhaust valves…) and by a strong variation of volume that cause some problems with classical numerical based mesh methods. With those methods (FEM, FVM) which use geometric polyhedral elements (hexaedron, tetrahedron, prismes…), it is necessary to change periodically the mesh to adapt the grid to the new geometry. This step of remeshing is very fastidious and costly in term of engineer time and may reduce the precision of calculation by numerical dissipation during the interpolation process of the variables from one mesh to another. Recently, the researcher community has renewed his interest for the development of a generation of numerical to circumvent the drawbacks of the classical methods.
Technical Paper

An Experimental Database Dedicated to the Study and Modelling of Cyclic Variability in Spark-Ignition Engines with LES

2011-04-12
2011-01-1282
In spark-ignition engines, cyclic variability limits the optimisation of operating conditions (choice of spark advance and/or injection timing) since it induces load variations and the occurrence of misfire and/or knock. This, in turn, restricts the operation range of new concepts such as downsizing or stratified combustion. To understand the basic physical phenomena behind cyclic variations, careful experimental studies are necessary to simultaneously characterise the combustion and the unsteady flow in the complete engine set-up. With a well-characterised experimental engine set-up, Large Eddy Simulation (LES) modelling can be easily combined with experiment in order to tackle intricate physical phenomena couplings. This paper describes an experimental database acquired on an optical research engine. The single-cylinder spark-ignition engine is equipped with four valves, a pentroof combustion chamber and a flat piston. The database is dedicated to the validation of LES models.
Technical Paper

Effects of Ethanol Addition in RON 95 Gasoline on GDI Stratified Combustion

2011-09-11
2011-24-0055
The aim of this work is to study the effect of ethanol/gasoline blends on stratified operation in a single-cylinder GDI engine and to build up a large database that will be used to improve engine simulation codes. The effects of three different fuel blends are compared: a reference RON 95 fuel without oxygenates, E20 with 20% in volume of ethanol added to the RON 95 fuel, and E85 corresponding to 85% of ethanol added to the RON 95 fuel. The engine was equipped with a centrally-mounted piezoelectric injector. A wide range of engine speed and load operating conditions were studied: from 1000 to 4000 rpm and from 1.5 to 9 bar IMEP. Injection strategies were optimized using up to three injections per working cycle. It was shown that multi-injection is necessary to improve stratified combustion stability and to limit particulate emissions.
Technical Paper

Experimental and Numerical Investigation on Hydrogen Internal Combustion Engine

2021-09-05
2021-24-0060
Hydrogen may be used to feed a fuel cell or directly an internal combustion engine as an alternative to current fossil fuels. The latter option offers the advantages of already existing hydrocarbon fuel engines - autonomy, pre-existing and proven technology, lifetime, controlled cost, existing industrial tools and short time to market - with a very low carbon footprint and high tolerance to low purity hydrogen. Hydrogen is expected to be relevant for light and heavy duty applications as well as for off road applications, but currently most of research focus on small engine and especially spark ignition engine which is easily adaptable. This guided us to select modern high-efficient gasoline-based engines to start the investigation of hydrogen internal combustion engine development. This study aims to access the properties and limitations of hydrogen combustion on a high-efficiency spark ignited single cylinder engine with the support of the 3D-CFD computation.
Technical Paper

Experiments and Modeling of Flame/Wall Interaction in Spark-Ignition (SI) Engine Conditions

2013-04-08
2013-01-1121
Dedicated experiments were performed in an optically-accessible, constant volume combustion vessel whose geometry and aerodynamic flow was representative of a pentroof SI engine combustion chamber. A detailed characterization of the flowfield was conducted in several near-wall regions where flame-wall interaction occurs using high-speed Particle Image Velocimetry (PIV). Simultaneous heat flux measurements were also performed at these same spatial locations. From a numerical point of view, current Reynolds Averaged Navier Stokes (RANS) or Large Eddy Simulation (LES) models take into account the effects of the wall on the flame however the effects of the turbulent flame-wall interaction on wall heat flux are not accounted for. Direct Numerical Simulations (DNS) of a 2D, premixed, steady-state V-flame were performed in order to aid the development and validation of a new model based on the flame surface density concept in order to take into account flame-wall interaction effects [1].
Technical Paper

Exploitation of Multi-Cycle Engine LES to Introduce Physical Perturbations in 1D Engine Models for Reproducing CCV

2012-04-16
2012-01-0127
In spark-ignition engines, Cycle-to-Cycle Variations (CCV) limit the optimization of engine operation since they induce torque variations and the occurrence of misfire and/or knock. A mean for limiting the related negative impact of CCV on fuel consumption and emissions would be control strategies able to address them. At present, engine simulation codes used for control purposes can only describe CCV linked to variations of gas exchanges in the air loop. CCV of the in-cylinder flow motion cannot be naturally captured by classical quasi-dimensional combustion chamber models. A convenient way to mimic CCV is to impose stochastic distributions of the combustion model parameters. Nevertheless, it is not always clear if these perturbations have physical bases as well as realistic ranges of variation.
Technical Paper

IFP Energies Nouvelles Approach for Dual Fuel Diesel-Gasoline Engines

2011-09-11
2011-24-0065
Compared to Spark Ignition (SI) engines, Compression Ignition (CI) engines are more efficient because of the higher compression ratios and leaner operation. However, thanks to stoichiometric air fuel ratio, SI engines allow efficient pollutants after treatment, particularly for NOx emissions. In this context, IFP Energies nouvelles (IFPEN) has developed the concept of diesel-gasoline combustion in order to combine the advantages of both fuels and both combustion processes. Focusing on a passenger car application, experiments have been performed using a modified DI turbocharged small diesel engine (the combustion chamber has been redesigned and port fuel injectors have been added). In-Cylinder Fuel Blending (ICFB) using port-fuel-injection of gasoline and optimized direct injection of diesel was used to control combustion phasing and duration. This modified engine can still run on diesel alone.
Journal Article

Influence of Injection Duration and Ambient Temperature on the Ignition Delay in a 2.34L Optical Diesel Engine

2015-09-01
2015-01-1830
Non-conventional operating conditions and fuels in diesel engines can produce longer ignition delays compared to conventional diesel combustion. If those extended delays are longer than the injection duration, the ignition and combustion progress can be significantly influenced by the transient following the end of injection (EOI), and especially by the modification of the mixture field. The objective of this paper is to assess how those long ignition delays, obtained by injecting at low in-cylinder temperatures (e.g., 760-800K), are affected by EOI. Two multi-hole diesel fuel injectors with either six 0.20mm orifices or seven 0.14mm orifices have been used in a 2.34L single-cylinder optical diesel engine. We consider a range of ambient top dead center (TDC) temperatures at the start of injection from 760-1000K as well as a range of injection durations from 0.5ms to 3.1ms. Ignition delays are computed through the analysis of both cylinder pressure and chemiluminescence imaging.
Technical Paper

Investigations on Pre-chamber Ignition Device Using Experimental and Numerical Approaches

2019-12-19
2019-01-2163
Nowadays Spark Ignition (SI) engine efficiency is mainly limited by abnormal combustion (knock) and stability issues at high dilution rate (both EGR and air). Increasing the combustion velocity is a relevant way to overcome these limitations. Main strategy to increase the combustion velocity is to enhance the flow motion in the cylinder (tumble motion) in order to increase the turbulence during the combustion. Such approach is mainly performed by working on intake port design which lead to engine volumetric efficiency penalties. Another approach to increase the combustion velocities is to have multiple ignition kernels in the chamber. This can be obtained thanks to Turbulent Jet Ignition (TJI) which uses a pre-chamber to spread the initial flame kernel throughout the combustion chamber. To achieve pre-chamber optimization a deep understanding of the complex phenomena involved in TJI as well as validated numerical tools is required.
Technical Paper

LES Calculations of a Four Cylinder Engine

2011-04-12
2011-01-0832
A full 3D Large Eddy Simulation (LES) of a four-stroke, four-cylinder engine, performed with the AVBP-LES code, is presented in this paper. The drive for substantial CO₂ reductions in gasoline engines in the light of the global energy crisis and environmental awareness has increased research into gasoline engines and increased fuel efficiencies. Precise prediction of aerodynamics, mixing, combustion and pollutant formation are required so that CFD may actively contribute to the improvement/optimization of combustion chamber, intake/exhaust ducts and manifold shapes and volumes which all contribute to the global performance and efficiency of an engine. One way to improve engine efficiency is to reduce the cycle-to-cycle variability, through an improved understanding of their sources and effects. The conventional RANS approach does not allow addressing non-cyclic phenomena as it aims to compute the average cycle.
Journal Article

Large Eddy Simulation of a Motored Single-Cylinder Engine Using System Simulation to Define Boundary Conditions: Methodology and Validation

2011-04-12
2011-01-0834
Large Eddy Simulation (LES) appears today as a prospective tool for engine study. Even if recent works have demonstrated the feasibility of multi-cycle LES, they have also pointed out a lack of detailed experimental data for validation as well as for boundary condition definition. The acquisition of such experimental data would require dedicated experimental set-ups. Nevertheless, in future industrial applications, unconditional dedicated experimental set-ups will not be the main stream. To overcome this difficulty, a methodology is proposed using system simulation to define fluid boundary conditions (crank-resolved intake/exhaust pressures and temperatures) and wall temperatures. The methodology combines system simulation for the whole experimental set-up and LES for the flow in the combustion chamber as well as a part of the intake and exhaust ducts. System simulation provides the crank-resolved temperature and pressure traces at the LES mesh inlet and outlet.
Technical Paper

Optimization of Dual Fuel Diesel-Methane Operation on a Production Passenger Car Engine - Thermodynamic Analysis

2013-10-14
2013-01-2505
With the emergence of stringent emissions standards and needs for fuel diversification, many countries are considering a massive use of natural gas for transportation. In this context, dual fuel diesel-CNG combustion is considered as a promising solution for highly efficient internal combustion engines. This concept offers the possibility to combine a diesel pilot injection as a high energy combustion initiation event, with an indirect injection of methane as main energy source. Low CO2 emissions can be reached thanks to the use of a conventional compression ignition engine with high compression ratio, and thanks to methane's high knocking resistance and low carbon content. Another benefit of dual fuel operation with high diesel substitution rates is the drastic reduction of PM emissions since methane is a very stable molecule containing no soot precursor.
Journal Article

Preliminary Design of a Two-Stroke Uniflow Diesel Engine for Passenger Car

2013-04-08
2013-01-1719
The target of substantial CO₂ reductions in the spirit of the Kyoto Protocol as well as higher engine efficiency requirements has increased research efforts into hybridization of passenger cars. In the frame of this hybridization, there is a real need to develop small Internal Combustion Engines (ICE) with high power density. The two-stroke cycle can be a solution to reach these goals, allowing reductions of engine displacement, size and weight while maintaining good NVH, power and consumption levels. Reducing the number of cylinders, could also help reduce engine cost. Taking advantage of a strong interaction between the design office, 0D system simulations and 3D CFD computations, a specific methodology was set up in order to define a first optimized version of a two-stroke uniflow diesel engine. The main geometrical specifications (displacement, architecture) were chosen at the beginning of the study based on a bibliographic pre-study and the power target in terms.
X