Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A 0D Phenomenological Model Using Detailed Tabulated Chemistry Methods to Predict Diesel Combustion Heat Release and Pollutant Emissions

2011-04-12
2011-01-0847
In the last two decades, piston engine specifications have deeply evolved. Indeed, new challenges nowadays concern the reduction of pollutant emissions (EURO regulations) and CO2 emissions. To satisfy these new requirements, powertrains have become very complex systems including a large number of high technology components (high pressure injectors, turbocharger, Exhaust Gas Recirculation (EGR) loop, after-treatment devices...). In this context, the engine control plays a major role in the development and the optimization of powertrains. Few years ago, engine control strategies were mainly defined by experiments on engine test benches. This approach is not adapted to the complexity of future engines: on the one hand, tests are too expensive and on the other hand, they do not give much information to understand interactions between components. Today, a promising alternative to tests may be the use of 0D/1D simulation tools.
Technical Paper

A Capacity Oriented Quality Assurance Method by Using Modular Containerized Test Cells

2002-11-19
2002-01-3456
The requirements for diesel and gasoline engines are continuously increasing with respect to emissions, fuel consumption and durability. Besides the engine development process the quality of the production engine itself has to be ensured. This paper discusses alternative philosophies and approaches in terms of the quality management process. Based on a detailed analysis of the required equipment advanced solutions are presented. Modular containerized test cells are described being equipped exactly to the current testing task ready to use in low infrastructure. The testing capacity of the facility can be adjusted to the actual production volume by simply removing or adding modular test cells. Thus, at every facility the testing tasks can be executed successfully and the investment can be kept low.
Technical Paper

A Compositional Representative Fuel Model for Biofuels - Application to Diesel Engine Modelling

2010-10-25
2010-01-2183
The adequacy of the fuels with the engines has been often a major goal for the oil industry or car manufacturers. As the formulation of fuels becomes more complex, the use of numerical simulation provides an efficient way to understand and analyze the combustion process. These conclusions become increasingly true with the appearance of second generation biofuels. This paper describes a methodology for the representation of fuels and biofuels using a lumping procedure combined with adequate thermodynamic and thermophysical models. This procedure allows computing different thermodynamic and thermophysical properties for simulation purposes in internal combustion engines. The lumping approach involves reducing analytical data to a few pseudo-components characterized by their molecular weight, critical properties and acentric factor.
Technical Paper

A New Approach for Optimization of Mixture Formation on Gasoline DI Engines

2010-04-12
2010-01-0591
Advanced technologies such as direct injection DI, turbocharging and variable valve timing, have lead to a significant evolution of the gasoline engine with positive effects on driving pleasure, fuel consumption and emissions. Today's developments are primarily focused on the implementation of improved full load characteristics for driving performance and fuel consumption reduction with stoichiometric operation, following the downsizing approach in combination with turbocharging and high specific power. The requirements of a relatively small cylinder displacement with high specific power and a wide flexibility of DI injection specifications lead to competing development targets and additionally to a high number of degrees of freedom during optimization. In order to successfully approach an optimum solution, FEV has evolved an advanced development methodology, which is based on the combination of simulation, optical diagnostics and engine thermodynamics testing.
Technical Paper

A New Approach for Prediction of Crankshaft Stiffness and Stress Concentration Factors

2010-04-12
2010-01-0949
This paper introduces a new approach based on a statistical investigation and finite element analysis (FEA) methodology to predict the crankshaft torsional stiffness and stress concentration factors (SCF) due to torsion and bending which can be used as inputs for simplified crankshaft multibody models and durability calculations. In this way the reduction of the development time and effort of passenger car crankshafts in the pre-layout phase is intended with a least possible accuracy sacrifice. With the designated methodology a better approximation to reality is reached for crank torsional stiffness and SCF due to torsion and bending compared with the empirical approaches, since the prediction does not depend on the component tests with limited numbers of specimen, as in empirical equations, but on various FE calculations.
Technical Paper

A New CFD Approach for Assessment of Swirl Flow Pattern in HSDI Diesel Engines

2010-09-28
2010-32-0037
The fulfillment of the aggravated demands on future small-size High-Speed Direct Injection (HSDI) Diesel engines requires next to the optimization of the injection system and the combustion chamber also the generation of an optimal in-cylinder swirl charge motion. To evaluate different port concepts for modern HSDI Diesel engines, usually quantities as the in-cylinder swirl ratio and the flow coefficient are determined, which are measured on a steady-state flow test bench. It has been shown that different valve lift strategies nominally lead to similar swirl levels. However, significant differences in combustion behavior and engine-out emissions give rise to the assumption that local differences in the in-cylinder flow structure caused by different valve lift strategies have noticeable impact. In this study an additional criterion, the homogeneity of the swirl flow, is introduced and a new approach for a quantitative assessment of swirl flow pattern is presented.
Technical Paper

A Phenomenological Combustion Model Including In-Cylinder Pollutants To Support Engine Control Optimisation Under Transient Conditions

2011-08-30
2011-01-1837
Regulations in terms of pollutant emissions are becoming more and more constraining. The car manufacturers need to adopt a global optimisation approach of engine and exhaust after-treatment systems. An engine architecture definition coupled to an adapted control strategy seem to be an ideal way to address this issue. The problem is particularly complex, considering the trade off between the drivability which must be maintained, the reduction of the in-cylinder pollutant emissions, the reduction of the fuel consumption and the optimisation of the operating conditions to reach high conversion efficiencies via exhaust gas after-treatment systems. Sophisticated control strategies and models can only be developed with a complete understanding of the physical phenomena occurring in the combustion chamber, thanks to experimental measurements and engine system simulations.
Technical Paper

About Cross-Sensitivities of NOx Sensors in SCR Operation

2013-04-08
2013-01-1512
Meeting the upcoming NOx emissions standards is a major challenge for the lean-burn engines, thus requiring a highly efficient exhaust gas aftertreatment. Currently, the Selective Catalytic Reduction (SCR) appears to be the most promising technology, especially when operated with two kinds of reductants: ammonia (generally derived from urea) and ethanol. In order to reach high conversion levels while avoiding the overinjection of the reductant, a very accurate model-based control assisted with at least one NOx sensor is required. This study focuses on the sensitivity of NOx sensors to the main nitrogenous species encountered: ammonia, isocyanic acid (HNCO) and hydrogen cyanide (HCN). The cross-sensitivity to ammonia is the only one to be already described in literature and already used in the urea-SCR control systems to limit the risks of ammonia-slip. However, HNCO can also be found downstream of a catalyst during urea-SCR if the urea delivery or the catalyst are deficient.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 2: Impact of Fuel Properties on HCCI Combustion

2008-10-06
2008-01-2404
A broad range of diesel, kerosene, and gasoline-like fuels has been tested in a single-cylinder diesel engine optimized for advanced combustion performance. These fuels were selected in order to better understand the effects of ignition quality, volatility, and molecular composition on engine-out emissions, performance, and noise levels. Low-level biofuel blends, both biodiesel (FAME) and ethanol, were included in the fuel set in order to test for short-term advantages or disadvantages. The diesel engine optimized in Part 1 of this study included cumulative engine hardware enhancements that are likely to be used to meet Euro 6 emissions limits and beyond, in part by operating under conditions of Homogeneous Charge Compression Ignition (HCCI), at least over some portions of the speed and load map.
Technical Paper

Aerodynamic Flow Simulation in an Internal Combustion Engine Using the Smoothed Particle Hydrodynamics Method

2011-09-11
2011-24-0029
The numerical simulation of internal aerodynamic of automotive combustion chamber is characterised by complex displacements of moving elements (piston, intake/exhaust valves…) and by a strong variation of volume that cause some problems with classical numerical based mesh methods. With those methods (FEM, FVM) which use geometric polyhedral elements (hexaedron, tetrahedron, prismes…), it is necessary to change periodically the mesh to adapt the grid to the new geometry. This step of remeshing is very fastidious and costly in term of engineer time and may reduce the precision of calculation by numerical dissipation during the interpolation process of the variables from one mesh to another. Recently, the researcher community has renewed his interest for the development of a generation of numerical to circumvent the drawbacks of the classical methods.
Technical Paper

An Experimental Database Dedicated to the Study and Modelling of Cyclic Variability in Spark-Ignition Engines with LES

2011-04-12
2011-01-1282
In spark-ignition engines, cyclic variability limits the optimisation of operating conditions (choice of spark advance and/or injection timing) since it induces load variations and the occurrence of misfire and/or knock. This, in turn, restricts the operation range of new concepts such as downsizing or stratified combustion. To understand the basic physical phenomena behind cyclic variations, careful experimental studies are necessary to simultaneously characterise the combustion and the unsteady flow in the complete engine set-up. With a well-characterised experimental engine set-up, Large Eddy Simulation (LES) modelling can be easily combined with experiment in order to tackle intricate physical phenomena couplings. This paper describes an experimental database acquired on an optical research engine. The single-cylinder spark-ignition engine is equipped with four valves, a pentroof combustion chamber and a flat piston. The database is dedicated to the validation of LES models.
Journal Article

Analysis of the Effect of Bio-Fuels on the Combustion in a Downsized DI SI Engine

2011-08-30
2011-01-1991
In this study the fuel influence of several bio-fuel candidates on homogeneous engine combustion systems with direct injection is investigated. The results reveal Ethanol and 2-Butanol as the two most knock-resistant fuels. Hence these two fuels enable the highest efficiency improvements versus RON95 fuel ranging from 3.6% - 12.7% for Ethanol as a result of a compression ratio increase of 5 units. Tetrahydro-2-methylfuran has a worse knock resistance and a decreased thermal efficiency due to the required reduction in compression ratio by 1.5 units. The enleanment capability is similar among all fuels thus they pose no improvements for homogeneous lean burn combustion systems despite a significant reduction in NOX emissions for the alcohol fuels as a consequence of lower combustion temperatures.
Technical Paper

Analysis of the Particle Size Distribution in the Cylinder of a Common Rail DI Diesel Engine During Combustion and Expansion

2000-06-19
2000-01-1999
In the recent years diesel engine developers and manufacturers achieved a great progress in reducing the most important diesel engine pollutants, NOX and particulates. But nevertheless big efforts in diesel engine development are necessary to meet with the more stringent future emission regulations. To improve the knowledge about particle formation and emission an insight in the cylinder is necessary. By using the fast gas sampling technique samples from the cylinder were taken as a function of crank angle and analyzed regarding the soot particle size distribution and the particle mass. The particle size distribution was measured by a conventional SMPS. Under steady state conditions the influence of aromatic and oxygen content in the fuel on in-cylinder particle size distribution and particle mass inside a modern 4V-CR-DI-diesel-engine were determined. After injection and ignition, mainly small soot particles were formed which grow and in the later combustion phase coagulate.
Technical Paper

Analytical and Empirical Methods for Optimization of Cylinder Liner Bore Distortion

2001-03-05
2001-01-0569
Beside the traditional prediction of stresses and verification by mechanical testing the optimization of cylinder liner bore distortion is one of today's most important topics in crankcase structure development. Low bore distortion opens up potentials for optimizing the piston group. As the piston rings achieve better sealing characteristics in a low deformation cylinder liner, oil consumption and blow-by are reduced. For unchanged oil consumption and blow-by demands, engine friction and subsequently, fuel consumption could be reduced by decreasing the pre-tension of the piston rings. From the acoustical point of view an optimization of piston-slap noise is often based on an optimized bore distortion behavior. Apart from basics to the behavior of liner bore distortion the paper presents advanced analytical and empirical methods for detailed prediction, verification and optimization of bore distortion taking into account the effective engine operation conditions.
Technical Paper

Application of Vehicle Interior Noise Simulation (VINS) for NVH Analysis of a Passenger Car

2005-05-16
2005-01-2514
The overall perception of a vehicle's quality is significantly influenced by its interior noise characteristics. Therefore, it is important to strike a balance between “pleasant” and “dynamic” sound that fits the customer requirements with respect to vehicle brand and class [1]. Typically, a significant share of the interior vehicle noise is transferred through structure-borne paths. Hence, the powertrain mounting system plays an important role in designing the interior noise. This paper describes an application of the method of vehicle interior noise simulation (VINS) to achieve a characteristic interior sound. This approach is based on separate measurements (or calculations) of excitations and transfer functions and subsequent calculation of the interior noise in the time domain.
Technical Paper

Applying Representative Interactive Flamelets (RIF) with Special Emphasis on Pollutant Formation to Simulate a DI Diesel Engine with Roof-Shaped Combustion Chamber and Tumble Charge Motion

2007-04-16
2007-01-0167
Combustion and pollutant formation in a new recently introduced Common-Rail DI Diesel engine concept with roof-shaped combustion chamber and tumble charge motion are numerically investigated using the Representative Interactive Flamelet concept (RIF). A reference case with a cup shaped piston bowl for full load operating conditions is considered in detail. In addition to the reference case, three more cases are investigated with a variation of start of injection (SOI). A surrogate fuel consisting of n-decane (70% liquid volume fraction) and α-methylnaphthalene (30% liquid volume fraction) is used in the simulation. The underlying complete reaction mechanism comprises 506 elementary reactions and 118 chemical species. Special emphasis is put on pollutant formation, in particular on the formation of NOx, where a new technique based on a three-dimensional transport equation within the flamelet framework is applied.
Technical Paper

Architecture of a Detailed Three Dimensional Piston Ring Model

2011-09-11
2011-24-0159
Piston rings are faced with a broad range of demands like optimal sealing properties, wear properties and reliability. Even more challenging boundary conditions must be met when latest developments in the fields of direct injection as well as the application of bio fuels. This complex variety of piston ring design requirements leads to the need of a comprehensive simulation model in order to support the development in the early design phase prior to testing. The simulation model must be able to provide classical objectives like friction analysis, wear rate and blow-by. Furthermore, it must include an adequate oil consumption model. The objective of this work is to provide such a simulation model that is embedded in the commercial MBS software ‘FEV Virtual Engine’. The MBS model consists of a cranktrain assembly with a rigid piston that contains flexible piston rings.
Technical Paper

Benefits of the Electromechanical Valve Train in Vehicle Operation

2000-03-06
2000-01-1223
One of the most promising methods to reduce fuel consumption is to use unthrottled engine operation, where load control occurs by means of variable valve timing with an electromechanical valve train (EMV) system. This method allows for a reduction in fuel consumption while operating under a stoichiometric air-fuel-ratio and preserves the ability to use conventional exhaust gas aftertreatment technology with a 3-way-catalyst. Compared with an engine with a camshaft-driven valve train, the variable valve timing concept makes possible an additional optimization of cold start, warm-up and transient operation. In contrast with the conventionally throttled engine, optimized control of load and in-cylinder gas movement is made possible from the start of the first cycle. A load control strategy using a “Late Intake Valve Open” (LIO) provides a reduction in start-up HC emissions of approximately 60%.
Technical Paper

Catalyst Aging Method for Future Emissions Standard Requirements

2010-04-12
2010-01-1272
This paper describes an alternative catalyst aging process using a hot gas test stand for thermal aging. The solution presented is characterized by a burner technology that is combined with a combustion enhancement, which allows stoichiometric and rich operating conditions to simulate engine exhaust gases. The resulting efficiency was increased and the operation limits were broadened, compared to combustion engines that are typically used for catalyst aging. The primary modification that enabled this achievement was the recirculation of exhaust gas downstream from catalyst back to the burner. The burner allows the running simplified dynamic durability cycles, which are the standard bench cycle that is defined by the legislation as alternative aging procedure and the fuel shut-off simulation cycle ZDAKW. The hot gas test stand approach has been compared to the conventional engine test bench method.
X