Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

An Approach to Determining Non-Linear Lubricant Viscoelastic Properties

1997-10-01
972857
By using empirical and semi-empirical relationships previously reported in the literature, non-linear viscoelastic properties of a number of lubricants have been determined from their linear viscoelastic behaviour, as measured by an oscillatory rheometer. Similarly to polymeric viscosity index improved (VII) lubricants, non-polymeric mineral blends were also shown to display viscoelastic behaviour. A general equation is suggested that allows the first normal stress difference which characterises the viscoelastic behaviour of lubricants to be expressed as a function of the shear viscosity.
Technical Paper

Cold-start Measurements of the Lubricant Film Thickness in the Cylinder of a Firing Diesel Engine

1998-10-19
982436
Laser induced fluorescence (LIF) was used in the cylinder liner of a firing single-cylinder direct-injection diesel engine to characterise the development of the lubricant film during the first 200 engine cycles under cold-start conditions. The results have provided information on the rate of oil film development which has proved to be a highly unsteady process due to the complicated oil transport processes through the ring-pack.
Technical Paper

Development of a Piston-Ring Lubrication Test-Rig and Investigation of Boundary Conditions for Modelling Lubricant Film Properties

1995-10-01
952468
A test-rig has been developed to simulate under idealised conditions the lubricating action between the piston-ring and the cylinder-liner in reciprocating engines. Complications arising in production engine piston-assemblies such as lubricant starvation, ring and piston dynamics, thermal and elastic deformations and blowby can thus be avoided so that the lubricant film characteristics are examined in isolation. The lubricant film thickness and friction at the piston-ring/liner interface were simultaneously measured throughout the stroke as a function of speed and load and compared with the solution of the Reynolds equation for a range of boundary conditions. The examined conditions included the Swift-Stieber (Reynolds), the separation and limiting cases of the Floberg and the Coyne & Elrod boundary conditions using a numerically efficient general purpose program.
Technical Paper

Measurements of the Lubricant Film Thickness in the Cylinder of a Firing Diesel Engine Using LIF

1998-10-19
982435
A laser-induced fluorescence (LIF) system has been developed to obtain measurements of the instantaneous lubricant film thickness in the piston-cylinder assembly of a firing single-cylinder, direct-injection diesel engine. Measurements were made at top-dead-centre (TDC), mid-stroke and bottom-dead-centre (BDC) position by means of three fibre optic probes inserted into the cylinder liner and mounted flush with its surface. Following extensive repeatability tests, the cycle-averaged lubricant film thickness was estimated for different multi-grade oils as a function of engine speed, load and temperature. The results quantified the dependence of the film thickness ahead, under and behind the piston rings on oil chemistry and viscometric properties, thus confirming the important role of the LIF technique in the development and formulation of new engine oils.
Technical Paper

Mixed Lubrication Modelling of Newtonian and Shear Thinning Liquids in a Piston-Ring Configuration

1997-10-01
972924
Mixed-lubrication models comprising of Patir and Cheng's [1,2] average Reynolds equation and Greenwood and Tripp's [3] asperity interaction formulations have hitherto been widely used in predicting piston-ring performance. In this paper a number of models have been developed to allow mixed-lubrication of both Newtonian and shear thinning fluids to be simulated. Lubricating action usually involves two anisotropic solid surfaces of statistically different profiles. Various forms of the average Reynolds equation and the asperity interaction models require parameters representing the composite surface roughness and profile parameters at the contact. Here a strategy for determining these equivalent composite parameters is presented. Mathematical simulations indicate that when the composite RMS and composite summit RMS roughness of the contact approach the same value, the performance of the mix-lubrication model becomes dominated by the asperity interaction formulation.
X