Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

A Computational Study on the Effect of Injector Location on the Performance of a Small Spark-Ignition Engine Modified to Operate under the Direct-Injection Mode

2020-04-14
2020-01-0286
In a direct-injection (DI) engine, charge motion and mixture preparation are among the most important factors deciding the performance and emissions. This work was focused on studying the effect of injector positioning on fuel-air mixture preparation and fuel impingement on in-cylinder surfaces during the homogeneous mode of operation in a naturally aspirated, small bore, 0.2 l, light-duty, air-cooled, four-stroke, spark-ignition engine modified to operate under the DI mode. A commercially available, six-hole, solenoid-operated injector was used. Two injector locations were identified based on the availability of the space on the cylinder head. One location yielded the spray-guided (SG) configuration, with one of the spray plumes targeted towards the spark plug. In the second location, the spray plumes were targeted towards the piston top in a wall-guided (WG) configuration so as to minimize the impingement of fuel on the liner.
Technical Paper

Analysis of In-Cylinder Flow and Cycle-to-Cycle Flow Variations in a Small Spark-Ignition Engine at Different Throttle Openings

2020-04-14
2020-01-0793
Flow variations from one cycle to the next significantly influence the mixture formation and combustion processes in engines. Therefore, it is important to understand the fluid motion and its cycle-to-cycle variations (CCVs) inside the engine cylinder. Researchers have generally investigated the cycle-to-cycle flow variations in moderate- to large-sized engines. In the present work, we have performed the flow measurement and analysis in a small spark-ignition engine. Experiments are conducted in an optically accessible, single-cylinder, port-fuel-injection engine with displacement volume of 110 cm3 at different throttle openings (i.e. 50% and WOT) using particle image velocimetry. Images are captured at different crank angle positions during both intake and compression strokes over a tumble measurement plane, bisecting the intake and exhaust valves and passing through the cylinder axis.
Technical Paper

Comparative Studies on the Idling Performance of a Three Cylinder Passenger Car Engine Fitted with a Carburettor and a Single Point Electronic Gasoline Fuel Injection System

1997-05-01
971615
Experimental investigations relating to the performance and emission characteristics under idling conditions of a three cylinder passenger car spark ignition engine operating on a conventional carburettor and a developed single point gasoline fuel injection system are described in this paper. The idling performance at different engine speeds was studied by carrying out comprehensive engine testing on a test bed in two phases. In the first phase, experiments were conducted on an engine fitted with a conventional carburettor whilst they were extended to the engine provided with a developed electronic single point fuel injection (SPI) system, whose fuel spray was directed against the direction of air flow. The injection timing of the SPI system was varied from 82 deg. before inlet valve opening (or 98 deg. before top dead center) to 42 deg. after inlet valve opening (or 26 deg. after top dead center).
Technical Paper

Development and Performance Studies on Ion-Exchanged X-Zeolites as Catalysts for SI Engine Emission Control

1997-05-01
971652
Three catalysts based on X-zeolite have been developed by exchanging its Na+ ion with Copper, Nickel and Vanadium metal ions and tested in a stationary SI engine exhaust to observe their potentialities for NOx and CO controlling. The catalyst Cu-X, in comparison to Ni-X and V-X, exhibits much better NOx and CO reduction performance at any temperature. Maximum NOx conversion efficiencies achieved with Cu-X, Ni-X and V-X are 62.2%, 59.7% and 56.1% respectively. Unlike noble metals, the doped X-zeolite catalysts, studied here, maintain their peak NOx reduction performance through a wider range of A/F ratio. Back pressure developed across the catalyst bed is found to be well within the acceptable limits.
Technical Paper

Experimental Investigation of Combustion Stability and Particle Emission from CNG/Diesel RCCI Engine

2020-04-14
2020-01-0810
This paper presents the experimental investigation of combustion stability and nano-particle emissions from the CNG-diesel RCCI engine. A modified automotive diesel engine is used to operate in RCCI combustion mode. An open ECU is used to control the low and high reactivity fuel injection events. The engine is tested for fixed engine speed and two different engine load conditions. The tests performed for various port-injected CNG masses and diesel injection timings, including single and double diesel injection strategy. Several consecutive engine cycles are recorded using in-cylinder combustion pressure measurement system. Statistical and return map techniques are used to investigate the combustion stability in the CNG-diesel RCCI engine. Differential mobility spectrometer is used for the measurement of particle number concentration and particle-size and number distribution. It is found that advanced diesel injection timing leading to higher cyclic combustion variations.
Technical Paper

Hydrocarbon Modeling for Two-Stroke SI Engine

1994-03-01
940403
Hydrocarbon emissions due to short-circuiting of the fresh charge during scavenging process is a major source of pollution from the two-stroke spark ignition engines. This work presents a prediction scheme for analysis of hydrocarbon emission based on the material balance considerations. A generalized form of globular combustion equation has been used for general applicability of the scheme to any fuel or fuel blends. The influence of mixture quality, scavenging characteristics, residual contents and the delivery ratio are predicted. A good qualitative prediction has been established at all delivery ratios. The predictions are found quantitatively satisfactory in the higher delivery ratio range where the short-circuiting phase of the scavenging process is dominant.
Technical Paper

Investigations on the Design and Performance of Two Types of Hot Surface Ignition Engines

1992-09-01
921632
Use of methanol and ethanol in conventional diesel engines is associated with problems on account of the high self ignition temperature of these fuels. The Hot Surface Ignition (HSI) method wherein a part of the injected fuel is made to touch an electrically heated hot surface for ignition, is an effective way of utilizing these fuels in conventional diesel engines. In the present work two types of HSI engines, one using a large ceramic base and the other using a conventional glowplug were developed. These engines were tested with methanol, M.spirit (about 90 % methanol and 10 % ethanol) and diesel. The results of performance, fuel economy emissions and combustion parameters including heat release rates for these fuels with both the types of HSI engines are presented. Diesel engines are commonly used as primemovers in the mass transportation and agricultural sectors because of their high brake thermal efficiency and reliability.
Technical Paper

NOx Reduction in SI Engine Exhaust Using Selective Catalytic Reduction Technique

1998-02-23
980935
Copper ion-exchanged X-zeolite with urea infusion was tested for nitrogen oxide (NOx)conversion efficiency in this study. Temperature datapoints were obtained to arrive at peak activation temperatures. Variation of the air/fuel ratio showed the widening of the λ-window(the range of air-fuel ratios over which the NOx conversion efficiency is considerable); a maximum of 62% NOx conversion efficiency was obtained in the lean-burn range. Effects of space velocity variations were also observed. In order to minimise the deactivation of zeolite caused by water, ammonium carbonate and ammonium sulphate were deposited on the copper ion-exchanged X-zeolite and the corresponding NOx conversion efficiencies measured. Ammonia slip (leakage of unreacted ammonia), a prospective pollution hazard, was observed to be more in case of urea infusion than ammonium salt deposition at higher temperatures.
Technical Paper

New Concept PFI-Atomizer Fueling System in a Small Single Cylinder SI Engine

2020-09-15
2020-01-2233
This paper presents results from tests using a fuel injection system which uses an ultrasonic atomizer paired with a port fuel injector (PFI). This concept was tested on a four stroke 200 cc spark-ignited two-wheeler engine. A throttle body with a PFI mounted on it was added to the air intake path of the engine, replacing the conventional carburetor. The ultrasonic disc was mounted in such a way, that the injected fuel from the PFI, falls directly on the face of the disc. The atomizer and the PFI were timed and synchronized appropriately using an Arduino® microcontroller, to promote atomization and vaporization of the fuel injected. The atomizer disc was excited using a high frequency oscillator circuit. The engine could be tested at various speeds and loads, corresponding to points which lie on the local drive duty cycle. The engine test results showed improvement in the engine exhaust emissions.
Technical Paper

Performance Evaluation of a Small Agricultural Engine Operated on Dual Fuel (Diesel + Natural Gas) System

1995-09-01
951777
Diesel has been used extensively as fuel for small agricultural engines in India. As natural gas is available in abundance, lot of interest is shown to substitute gas for diesel in these engines either partially or fully. Natural gas has a high Octane rating and hence to replace diesel fully, major irreversible changes in the diesel engine is required. However, in the dual fuel (diesel + gas) system a large percentage of diesel substitution is possible by the addition of the components of the conversion system. A simple dual fuel system has been developed indigenously for this study. Engine tests with dual fuel gas system have been conducted on a single cylinder diesel engine. These results show that the performance of the engine with dual fuel system can almost match that of standard diesel engine.
Technical Paper

Performance of Thin-Ceramic-Coated Combustion Chamber with Gasoline and Methanol as Fuels in a Two-Stroke SI Engine

1994-10-01
941911
The performance of a conventional, carbureted, two-stroke spark-ignition (SI) engine can be improved by providing moderate thermal insulation in the combustion chamber. This will help to improve the vaporization characteristics in particular at part load and medium loads with gasoline fuel and high-latent-heat fuels such as methanol. In the present investigation, the combustion chamber surface was coated with a 0.5-mm thickness of partially stabilized zirconia, and experiments were carried out in a single-cylinder, two-stroke SI engine with gasoline and methanol as fuels. Test results indicate that with gasoline as a fuel, the thin ceramic-coated combustion chamber improves the part load to medium load operation considerably, but it affects the performance at higher speeds and at higher loads to the extent of knock and loss of brake power by about 18%. However, with methanol as a fuel, the performance is better under most of the operating range and free from knock.
Technical Paper

Spark Ignition Producer Gas Engine and Dedicated Compressed Natural Gas Engine - Technology Development and Experimental Performance Optimisation

1999-10-25
1999-01-3515
In the present study, a 17 kW, stationary, direct- injection diesel engine has been converted to operate it as a gas engine using producer-gas and compressed natural gas (CNG) as the fuels on two different operational modes called SIPGE (Spark Ignition Producer Gas Engine) and DCNGE (Dedicated Compressed Natural Gas Engine). The engine before conversion, was run on two other modes of operation, namely, diesel mode using only diesel and producer-gas-diesel-dual-fuel mode with diesel used for pilot ignition. The base data generated on diesel mode was used for performance comparison under other modes to ascertain the fuel flexibility. A technology development and optimisation followed by performance confirmation are the three features of this study. The exercise of conversion to SIPGE is a success since comparable power and efficiency could be developed. DCNGE operation also yielded comparable power with higher efficiency, which establishes the fuel flexibility of the converted machine.
Technical Paper

The Influence of High-Octane Fuel Blends on the Performance of a Two-Stroke SI Engine with Knock-Limited-Compression Ratio

1994-10-01
941863
The use of alcohol-gasoline blends enables the favorable features of alcohols to be utilized in spark ignition (SI) engines while avoiding the shortcomings of their application as straight fuels. Eucalyptus and orange oils possess high octane values and are also good potential alternative fuels for SI engines. The high octane value of these fuels can enhance the octane value of the fuel when it is blended with low-octane gasoline. In the present work, 20 percent by volume of orange oil, eucalyptus oil, methanol and ethanol were blended separately with gasoline, and the performance, combustion and exhaust emission characteristics were evaluated at two different compression ratios. The phase separation problems arising from the alcohol-gasoline blends were minimized by adding eucalyptus oil as a co-solvent. Test results indicate that the compression ratio can be raised from 7.4 to 9 without any detrimental effect, due to the higher octane rating of the fuel blends.
X