Refine Your Search

Topic

Author

Search Results

Technical Paper

A Compact Dual CAM Variable Valve Operation System to Improve Volumetric Efficiency of Small Engines

2012-04-16
2012-01-0161
Setting the correct valve timing and lift based on the operating speed will be the key to achieving good volumetric efficiency and torque. Continuously variable valve timing systems are the best choice but are too expensive. In this work a novel two stage variable valve actuation system was conceived and developed for a small single cylinder three wheeler spark ignition engine. The constraints were space, cost and complexity. The developed system uses one cam for low speeds and another cam that has a higher lift and duration for high speeds. The shift between the cams occurs through the mechanism even as the engine runs by the operation of a stepper motor which can be connected to the engine controller. A one dimensional simulation model validated with experimental data was used to predict the suitable valve timings and lifts in low and high speed ranges. Two profiles were then selected.
Technical Paper

Air Assisted Direct Cylinder Barrel Injection of Gasoline in a Two-Stroke S.I. Engine

2013-04-08
2013-01-0583
This experimental study was aimed at improving a two-stroke S.I engine by injecting gasoline with air assistance through the cylinder barrel. Experimentally obtained performance and emission parameters of the engine at 25% and 100% throttle positions were analyzed at 3000 rpm. The timing of air assisted injection was optimized at 25% throttle and 3000 rpm. The performance and emissions of the engine were compared with those obtained with an optimized manifold injection system. In all cases the best spark timing was used. At 25% throttle although the thermal efficiency was increased only slightly, there was a significant reduction in HC emissions to 6.63 g/kW-h with cylinder barrel injection from 10.69 g/kW-h with manifold injection due to reduced short circuiting of the fuel. There was a reduction in NO emissions as well with cylinder barrel injection. Comparisons were made at the point of highest thermal efficiency at 100% throttle also.
Journal Article

Analysis of In-Cylinder Air Motion in a DI Diesel Engine with Four Different Piston Bowl Configuration - A CFD and PIV Comparison

2013-11-27
2013-01-2786
Air motion inside the engine cylinder plays a predominant role on combustion and emission processes. An attempt has been made in this investigation to simulate the in-cylinder air motion in a DI diesel engine with four different piston configurations such as dome piston, bowl on dome and pentroof piston and pentroof offset bowl piston. For computational analysis, the commercial general purpose code STAR-CD Es-ice has been used, which works on the method of finite volume. To validate the simulation, qualitative and quantitative comparisons have been done with the PIV results available in the literature. From this study, the best possible piston configuration has been arrived at.
Technical Paper

Boost Port Injection of LPG in a Two - Stroke SI Engine for Reduction in HC Emissions

2013-04-08
2013-01-0584
Short-circuiting of the fuel air mixture during scavenging is the main reason for high fuel consumption and hydrocarbon (HC) emissions in two-stroke SI engines. Though direct injection of the fuel after the closure of ports has advantages, it is costly and complex. In this work, in a 2S-SI, single cylinder, automotive engine, LPG (liquefied Petroleum Gas) was injected through the boost port to reduce short-circuiting losses. A fuel injector was located on one of the boost ports and the air alone was fed through the other transfer and boost ports for scavenging. Experiments were done at 25% and 70% throttle openings with different injection timings and optimal spark timing at 3000 rpm. Boost port injection (BPI) of LPG reduced HC emissions at all conditions as compared to LPG-MI (Manifold Injection). Particularly significant reductions were seen at high throttle conditions and rich mixtures. HC reductions with BPI were 19% and 25% as compared to LPG-MI and gasoline-MI respectively.
Technical Paper

CFD Prediction of Combustion on Direct Injection Diesel Engine with Two Different Combustion Chamber Configurations

2013-11-27
2013-01-2804
Direct injection diesel engines are used in both light duty and heavy duty vehicles because of higher thermal efficiency compared to SI engines. However, due to only short time available for fuel-air mixing, combustion process depends on proper mixing. As a result, DI Diesel engine emits more NOx and soot into the atmosphere. Therefore, to achieve better combustion with less emission and also to accelerate the fuel-air mixing to improve the combustion, appropriate design of combustion chamber is crucial. Hence, in this work a study has been carried out using CFD to evaluate the effect of combustion chamber configuration on Diesel combustion with two different piston bowls. The two different piston configurations considered in this study are centre bowl on flat piston and pentroof offset bowl piston.
Technical Paper

Charge Dilution Strategy to Extend the Stable Combustion Regime of a Homogenous Charge Compression Ignited Engine Operated With Biodiesel

2023-09-29
2023-32-0132
The present research explores the application of biodiesel fuel in a stationary agricultural engine operated under the Homogenous charge compression ignition (HCCI) mode. To achieve HCCI combustion, a fuel vaporizer and a high-pressure port fuel injection system are employed to facilitate rapid evaporation of the biodiesel fuel. The low volatility of biodiesel is one of the significant shortcomings, which makes it inevitable to use a fuel vaporizer at 380oC. Consequently, the charge temperature is high enough to promote advanced auto-ignition. Further, the high reactivity of biodiesel favors early auto-ignition of the charge. Besides, biodiesel exhibits a faster burn rate due to its oxygenated nature. The combined effect of advanced auto-ignition and faster burn rate resulted in a steep rise in the in-cylinder pressures, leading to abnormal combustion above 20% load. Diluting the charge reduces reactivity and intake oxygen concentration, facilitating load extension.
Technical Paper

Comparison of Diesel-Water Emulsion and Water Vapor Induction Methods for Simultaneous Reduction in NOx and Smoke Emissions of a Diesel Engine

2020-08-14
2020-01-5076
Simultaneous reduction of oxides of nitrogen (NOx) and smoke emissions from diesel engines has always been a challenging task. In this research work, a relative comparison of diesel-water emulsion and water vapor induction methods has been made to examine NOx and smoke emissions reduction potential of a light-duty diesel engine. The water concentration was maintained at 6% of the total fuel in the emulsion and 6% of the total incoming air mass in the fumigation method. A stable diesel-water emulsion is prepared using commercially available surfactants, Span 80 and Tween 80 at 10% concentration. The stability of the emulsion was examined by visual inspection. The droplet size was quantified using dynamic light scattering technique and the emulsion was deemed stable for approximately 105 days on storage at room temperature. To generate water vapor in the intake manifold, 20 ultrasonic atomizers are utilized.
Journal Article

Composition Effects on Thermo-Physical Properties and Evaporation of Suspended Droplets of Biodiesel Fuels

2014-10-13
2014-01-2760
From the energy security and environment standpoint, the biodiesel fuels derived from vegetable oils or animal fats appear to be promising alternative to fossil diesel. Although the engine experiments prove their viability, the scientific data base for characterizing biodiesel combustion is limited. Detailed studies on the characterization of biodiesel fuels and their effects on fundamental engine processes like droplet evaporation and combustion are essential. The present study evaluates the useful thermo-physical properties and droplet evaporation characteristics of biodiesel fuels. The droplet evaporation measurements are carried out using suspended droplet experiments on five biodiesel fuels of Indian origin viz. jatropha, pongamia (karanja), neem, mahua and palm. The droplet evaporation rates of these fuels are related to properties such as binary diffusivity and molecular weight, which in turn depend on their fatty acid composition.
Technical Paper

Computer Simulation of Gasoline-Direct-Injected (Gdi) Extended Expansion Engine

2005-01-19
2005-26-057
This paper deals mainly with computer simulation of processes of Gasoline Direct Injection (GDI) associated with Extended Expansion Engine (EEE) concept applied to a four-stroke, single-cylinder SI engine. In the case of standard SI engines, part-load brake thermal efficiencies are low due to higher pumping losses. The pumping losses can be reduced by operating the engine always at full throttle as done in extended expansion engine. In extended expansion engine, higher Geometric Expansion Ratio (GER) compared to Effective Compression Ratio (ECR) is responsible for better performance at part loads. Usually, in this engine, by delaying inlet valve closure timing along with reduced clearance volume, extended expansion is achieved. Experimentally many researchers have proved that variable valve timing and variable compression ratio techniques adopted in SI engines, improves the part- load performance greatly.
Technical Paper

Detection of engine knock using speed oscillations in a single-cylinder spark-ignition engine

2019-12-19
2019-01-2206
In the present work, the possibility of engine knock detection is investigated based on in-cycle speed data, which is readily available to the ECU. Experiments were conducted at 3000 rpm with wide-open throttle condition in a single-cylinder, air-cooled, port-fuel-injection spark-ignition engine at different levels of knocking. It was found that amplitude of speed oscillations increased with the knock intensity for considered window with the size of 100 crank angle degree, starting from the top dead center of compression. The proposed knock indicators based on in-cycle speed oscillations were found to be able to identify the knock-limited spark timings at different operating conditions. Results showed that the amplitude of speed oscillations, derived from in-cycle speed data with resolution of six crank angle degree, could also be used to quantify the knock. The knock frequency based on speed oscillations also showed a sharp increase at the onset of knock.
Technical Paper

Development and Testing of a Novel Direct Mixture Injection System for a Two Stroke SI Engine

2008-09-09
2008-32-0077
In this work a novel mixture injection system has been developed and tested on a two stroke scooter engine. This system admits finely atomized gasoline directly into the combustion chamber. It employs many components that were individually developed, fabricated, tested and then coupled together. A small compressor driven by the engine sends pressurized air at the correct crank angle through a timing valve. This is connected to a mechanical injector through a high pressure pipe. Fuel is metered into the high pressure pipe using a standard low pressure injector. The developed mixture injection system resulted in considerable improvements in thermal efficiency and reduction in HC emissions over the manifold injection method at all engine outputs. A considerable reduction in short circuiting losses was seen. The highest brake thermal efficiency achieved was 25.5% as against 23% with the manifold injection system.
Journal Article

Effect of Engine Parameters on Mixture Stratification in a Wall-Guided GDI Engine - A Quantitative CFD Analysis

2017-03-28
2017-01-0570
Today, GDI engines are becoming very popular because of better fuel economy and low exhaust emissions. The gain in fuel economy in these engines is realized only in the stratified mode of operation. In wall-guided GDI engines, the mixture stratification is realized by properly shaping the combustion chamber. However, the level of mixture stratification varies significantly with engine operating conditions. In this study, an attempt has been made to understand the effect of engine operating parameters viz., compression ratio, engine speed and inlet air pressure on the level of mixture stratification in a four-stroke wall-guided GDI engine using CFD analysis. Three compression ratios of 10.5, 11.5 and 12.5, three engine speeds of 2000, 3000 and 4000 rev/min., and three inlet air pressures of 1, 1.2 and 1.4 bar are considered for the analysis. The CONVERGE software is used to perform the CFD analysis. Simulation is done for one full cycle of the engine.
Technical Paper

Effect of FFA of Jatropha Curcas L Oil on Performance and Emissions of a DI Diesel Engine

2012-04-16
2012-01-1318
Oil with high free fatty acid (FFA) content may not be an appropriate contestant for biodiesel production due to poor process yield. The high FFA content (≻1%) will cause soap formation and the separation of products will be exceedingly difficult, and as a result, it has low yield of biodiesel product. In order to increase the process yield, pretreatment setup is required. This involves additional cost and will increase overall fuel price. Hence crude vegetable oils having high FFA can be blended with diesel for effectual employment in diesel engines. In this context, Jatropha Curcas L, non-edible tree-based oil with higher FFA content, can be considered as one of the prominent blending sources for diesel. The primary objective of the present work is to analyze the effect of FFA content of crude Jatropha Curcas L oil (CJO) on performance and emission characteristics of a direct injection (DI) diesel engine.
Technical Paper

Effect of Homogenous-Stratified Mixture Combustion on Performance and Emission Characteristics of a Spray-Guided GDI Engine - A CFD Study

2020-04-14
2020-01-0785
Today, gasoline direct injection (GDI) engine is one of the best strategies to meet the requirement of low pollutant emissions and fuel consumption. Generally, the GDI engine operates in stratified mixture mode at part-load conditions and homogeneous mixture mode at full-load conditions. But, at part-loads, soot emissions are found to be high because of improper air-fuel mixing. To overcome the above issue, a homogenous-stratified mixture (a combination of the overall homogeneous lean mixture with a combustible mixture at the location of the spark plug) is found to be better to reduce soot emissions compared to a stratified mixture mode. It will also help reduce fuel consumption. In this study, the analysis has been done to evaluate the effect of homogeneous-stratified mixture combustion on the performance and emission characteristics of a spray-guided GDI engine under various conditions using computational fluid dynamics (CFD).
Journal Article

Effect of Manifold Orientation on Non-Reacting In-Cylinder Tumble Flows in an IC Engine with Pentroof Piston - An Investigation Using PIV

2010-04-12
2010-01-0956
This paper deals with experimental study of in-cylinder tumble flows in a single-cylinder, four-stroke, two-valve internal combustion engine using a pentroof-offset-bowl piston under non-reacting conditions with four intake manifold orientations at an engine speed of 1000 rev/min., during suction and compression strokes using particle image velocimetry. Two-dimensional in-cylinder tumble flow measurements and analysis are carried out in combustion space on a vertical plane passing through cylinder axis. Ensemble average velocity vectors are used to analyze the tumble flows. Tumble ratio (TR) and average turbulent kinetic energy (TKE) are evaluated and used to characterize the tumble flows. From analysis of results, it is found that at end of compression stroke, 90° intake manifold orientation shows an improvement in TR and TKE compared other intake manifold orientations considered.
Technical Paper

Effect of Mixture Distribution on Combustion and Emission Characteristics in a GDI Engine - A CFD Analysis

2017-09-04
2017-24-0036
Mixture distribution in the combustion chamber of gasoline direct injection (GDI) engines significantly affects combustion, performance and emission characteristics. The mixture distribution in the engine cylinder, in turn, depends on many parameters viz., fuel injector hole diameter and orientation, fuel injection pressure, the start of fuel injection, in-cylinder fluid dynamics etc. In these engines, the mixture distribution is broadly classified as homogeneous and stratified. However, with currently available engine parameters, it is difficult to objectively classify the type of mixture distribution. In this study, an attempt is made to objectively classify the mixture distribution in GDI engines using a parameter called the “stratification index”. The analysis is carried out on a four-stroke wall-guided GDI engine using computational fluid dynamics (CFD).
Technical Paper

Effect of Split Injection on Combustion and Performance of a Biogas-Diesel Fuelled PPCCI Engine

2015-09-06
2015-24-2453
In this experimental work the effect of double injection of diesel in a biogas-diesel partially premixed charge compression ignition (BDPPCCI) engine was studied. Biogas was inducted along with air while diesel was injected through a common rail system using an open electronic control unit. Experiments were done at a fixed brake mean effective pressure of 2 bar and an intake charge temperature of 40°C. The effect of start of injection (SOI) of first and second injection pulses and also the biogas energy share (BGES) were evaluated. Experiments were also done in the BDPPCCI mode with diesel being injected in a single pulse and in the biogas-diesel dual fuel (BDDF) mode for comparison. The thermal efficiency in the BDPPCCI mode was better with double injection of diesel as compared to single pulse injection due to better combustion phasing. Improved charge homogeneity and reduced wall wetting of diesel lowered the smoke emission levels with split injection.
Technical Paper

Effects of Cylinder Head Geometry on Mixture Stratification, Combustion and Emissions in a GDI Engine - A CFD Analysis

2019-01-15
2019-01-0009
Preparation of air-fuel mixture and its stratification, plays the key role to determine the combustion and emission characteristics in a gasoline direct injection (GDI) engine working in stratified conditions. The mixture stratification is mainly influenced by the in-cylinder flow structure, which mainly relies upon engine geometry i.e. cylinder head, intake port configuration, piston profile etc. Hence in the present analysis, authors have attempted to comprehend the effect of cylinder head geometry on the mixture stratification, combustion and emission characteristics of a GDI engine. The computational fluid dynamics (CFD) analysis is carried out on a single-cylinder, naturally-aspirated four-stroke GDI engine having a pentroof shaped cylinder head. The analysis is carried out at four pentroof angles (PA) viz., 80 (base case), 140, 200 and 250 with the axis of the cylinder.
Technical Paper

Effects of Oxidation Upon Long-term Storage of Karanja Biodiesel on the Combustion and Emission Characteristics of a Heavy-Duty Truck Diesel Engine

2021-09-21
2021-01-1200
The presence of unsaturated methyl esters in biodiesel makes it susceptible to oxidation and fuel quality degradation upon long-term storage. In the present work, the effects of oxidation of Karanja biodiesel upon long-term storage on the combustion and emission characteristics of a heavy-duty truck diesel engine are studied. The Karanja biodiesel is stored for one year in a 200 litres steel barrel at room conditions to mimic commercial storage conditions. The results obtained show that compared to diesel, the start of injection of fresh and aged biodiesels are advanced by ~2-degree crank angle, and the ignition delay time is reduced. Aged biodiesel showed a slightly smaller ignition delay compares to fresh biodiesel. The fuel injection and combustion characteristics of fresh and aged biodiesels were similar at all the load conditions. Both fresh and aged biodiesels produced higher oxides of nitrogen (NOx) and lower smoke emissions compared to diesel.
Technical Paper

Experimental Investigation on Reactivity Controlled Compression Ignition with Oxygenated Alternative Fuel Blends to Reduce Unburned Hydrocarbon Emissions

2021-09-21
2021-01-1203
For controlling oxides of nitrogen (NOx) and particular matter (PM) emissions from diesel engines, various fuel and combustion mode modification strategies are investigated in the past. Low temperature combustion (LTC) is an alternative combustion strategy that reduces NOx and PM emissions through premixed lean combustion. Dual fuel reactivity-controlled compression ignition (RCCI) is a promising LTC strategy with better control over the start and end of combustion because of reactivity and equivalence ratio stratification. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are significantly higher in RCCI, especially at part-load conditions. The present work intends to address this shortcoming by utilizing oxygenated alternative fuels. Considering the limited availability and higher cost, replacing conventional fuels completely with alternative fuels is not feasible.
X