Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Design Considerations for Power Electronics in HEV Applications

2007-04-16
2007-01-0277
Today the majority of power electronics is developed based on the requirements set by the main fields of application e.g. power generation, power supply, industrial drive and traction. With introduction to automotive applications new requirements have to be taken into account. This paper discusses how interconnection technologies for power semiconductors can be improved to meet the demand for higher temperature capability in HEV applications.
Technical Paper

Design Process Changes Enabling Rapid Development

2004-10-18
2004-21-0085
This paper will address the electronic development in the wireless industry and compare it to the electronic development in the automotive industry. The wireless industry is characterized by rapid, dramatic high tech changes with a less than two-year cycle time and an equivalent life cycle. The automotive electronics industry is working toward reducing the typical 2 to 3 year development cycle down 1 to 2 years but with a life cycle of 10 years or more. In addition to realizing the electronic development benefits seen in the wireless industry, the automotive industry places significantly more emphasis on the quality and reliability aspects of their designs as many of them are targeted toward, or interface with, safety critical applications. One of the lessons learned from the wireless industry is the development process; where the hardware selection process can be accomplished in a virtual environment in conjunction with concurrent software development.
Technical Paper

Efficient Virtualization for Functional Integration on Modern Microcontrollers in Safety-Relevant Domains

2014-04-01
2014-01-0206
The infrastructure in modern cars is a heterogeneous and historically grown network of different field buses coupling different electronic control units (ECUs) from different sources. In the past years, the amount of ECUs in the network has rapidly grown due to the mushrooming of new functions which historically were mostly implemented on a one-ECU-per-function basis resulting in up to a hundred ECUs in fully equipped luxury cars. Additionally, new functions like parking assist systems or advanced chassis control functions are getting increasingly complex and require more computing power. These two facts add up to a complex challenge in development. The current trend to host several functions in single ECUs as integration platforms is one attempt to address this challenge. This trend is supported by the increased computing power of current and upcoming multi-core microcontrollers.
Technical Paper

Extended Qualification of Power MOSFET to Fulfill Today's Requirements of Automotive Applications

2006-04-03
2006-01-0592
This paper focuses on the requirements of electronic systems in automotive applications in terms of reliability and quality. As one of the most common devices in such applications for switching electronic loads, the power MOSFET, is investigated in detail. Today's qualification procedure for discrete devices according to AEC Q101 [1] will be explained and how this correlates to the stress of the device in the application. It will be pointed out what additional tests for “extended qualification” should be made to deal with critical failure modes reducing overly conservative safety margins and preventing excessive costs on the component side. The tests will be explained and the results presented.
Technical Paper

High Pincount Packages Under Automotive Conditions

2000-03-06
2000-01-0459
New generation microcontrollers for automotive applications require a huge number of I/Os, dealing with various sensor and actuator signals derived from the external world. In case of the first TriCore™ based 32-Bit microcontroller this leads to approximately 270 I/Os for signal processing. Adding the power supply lines and thermal balls, the overall number of required interconnects grows far over 300. To outperform standard microcontroller packages, e.g. QFPs, the limitations in terms of package size and maximum number of interconnects have to be improved. Main goal is to adapt the component quality to the high level reliability standard, which is the basis of an implementation into automotive parts. Current tests with a P-BGA standard package show interesting results for the board level reliability, when design and test parameters are changed only slightly.
Technical Paper

Hybrid Cars Setting New Challenges for Optimized Power Semiconductors

2014-04-01
2014-01-0242
The electrification of the powertrain is still one of the main challenges and innovation drivers for modern cars. With the introduction of the Toyota Prius, launched in Japan in 1997 the first commercially available hybrid car in mass production, the development continued towards the BMW i3 launched in July 2013. One main component for all kind of hybrid cars is still the power semiconductor, which is used for DC/DC converters and for the inverter to drive the electric motor for the traction control. What makes the selection of the right power semiconductor complex, is the variety of different voltage levels within the car (from standard 12V board net, the new 48V board net all the way up to 400V and above) plus different requirements in terms of switching and conduction performance, or accordingly power losses. The selection of device by application and voltage will be discussed in this paper.
Technical Paper

Intelligent Hall Effect-Based Magnetosensors in Modern Vehicle Stability Systems

2000-11-01
2000-01-C058
After comparing magnetosensor technologies for automotive use the system aspects of wheelspeed sensors for vehicle stability systems are discussed. A new generation of intelligent differential Hall Effect-based sensors is described focussing on technology, operating principle and circuitry of the Hall IC. The final realization of the wheel speed sensor is presented concluding with a summary of the main advantages of this concept.
Journal Article

Markov Chain-based Reliability Analysis for Automotive Fail-Operational Systems

2017-03-28
2017-01-0052
A main challenge when developing next generation architectures for automated driving ECUs is to guarantee reliable functionality. Today’s fail safe systems will not be able to handle electronic failures due to the missing “mechanical” fallback or the intervening driver. This means, fail operational based on redundancy is an essential part for improving the functional safety, especially in safety-related braking and steering systems. The 2-out-of-2 Diagnostic Fail Safe (2oo2DFS) system is a promising approach to realize redundancy with manageable costs. In this contribution, we evaluate the reliability of this concept for a symmetric and an asymmetric Electronic Power Steering (EPS) ECU. For this, we use a Markov chain model as a typical method for analyzing the reliability and Mean Time To Failure (MTTF) in majority redundancy approaches. As a basis, the failure rates of the used components and the microcontroller are considered.
Technical Paper

Microsecond Bus (μSB): The New Open-Market Peripheral Serial Communication Standard

2005-04-11
2005-01-0057
For the past approximately 20 years, the Serial Peripheral Interface (SPI) has been the established standard for serial communication between a host or central microprocessor and peripheral devices. This standard has been used extensively in control modules covering the entire spectrum of automotive applications, as well as non-automotive applications. As the complexity of engine control modules grows, with the number of vehicle actuators being controlled and monitored increasing, the number of loads the central microprocessor has to manage is growing accordingly. These loads are typically controlled using discrete and pulse-width modulated (PWM) outputs from the microcontroller when real-time operation is essential or via SPI when real-time response is not critical. The increase of already high pin-count on microcontrollers, the associated routing effort and demand for connected power stages is a concern of cost and reliability for future ECU designs.
Technical Paper

Non-standard CAN Network Topologies Verification at High Speed Transmission Rate using VHDL-AMS

2010-04-12
2010-01-0688
This paper considers the verification of non-standard CAN network topologies of the physical layer at high speed transmission rate (500.0Kbps and 1.0Mbps). These network topologies including single star, multiple stars, and hybrid topologies (multiple stars in combination with linear bus or with ring topology) are simulated by using behavior modeling language (VHDL-AMS) in comparison to measurement. Throughout the verification process, CAN transceiver behavioral model together with other CAN physical layer simulation components have been proved to be very accurate. The modeling of measurement environment of the CAN network is discussed, showing how to get the measurement and simulation results well matched. This demonstrates that the simulation solution is reliable, which is highly desired and very important for the verification requirement in CAN physical layer design.
Technical Paper

Performance and Technology Comparison of GMR Versus Commonly used Angle Sensor Principles for Automotive Applications

2007-04-16
2007-01-0397
Position detection and control is necessary in modern automotive applications because of remotely controlled actuators, such as window lifters or windshield. In recent years, the demand for reliable actuators for safety critical systems, such as power steering systems, has also increased significantly. This creates a growing demand for fast, accurate and efficient servo motor systems that are increasingly smarter, smaller and cheaper. One interesting option is to use Giant Magneto Resistive (GMR) angle sensors to replace the resolvers, Hall, inductive and Anisotropic Magneto Resistive Effect (AMR) Sensors commonly used today for shaft-angle measurements. In principle, there are functional differences among various angle measurement technologies; thus, the effect of switching between them needs to be analyzed.
Technical Paper

Safety Element out of Context - A Practical Approach

2012-04-16
2012-01-0033
ISO 26262 is the actual standard for Functional Safety of automotive E/E (Electric/Electronic) systems. One of the challenges in the application of the standard is the distribution of safety related activities among the participants in the supply chain. In this paper, the concept of a Safety Element out of Context (SEooC) development will be analyzed showing its current problematic aspects and difficulties in implementing such an approach in a concrete typical automotive development flow with different participants (e.g. from OEM, tier 1 to semiconductor supplier) in the supply chain. The discussed aspects focus on the functional safety requirements of generic hardware and software development across the supply chain where the final integration of the developed element is not known at design time and therefore an assumption based mechanism shall be used.
Technical Paper

Seamless Solution for Electronic Power Steering

2006-04-03
2006-01-0593
The number of safety critical automotive applications employing high current brushless motors continues to increase (Steering, Braking, and Transmission etc.). There are many benefits when moving from traditional solutions to electrically actuated solutions. Some of these benefits can include increased fuel economy, simplified vehicle installation and packaging, increased feature set, improved safety and/or convenience, simplified unit assembly and modular testability prior as well as during vehicle manufacturing. The trend to implement brushless motors in these applications (which require electronically controlled commutation) has also brought with it the need for powerful inverters, which primarily consist of Power MOSFETs and MOSFET Driver ICs. This paper reviews the challenges associated with the design of safety critical electronic systems which combine sensing, control and actuation.
Technical Paper

Smart Power Supply Concept for 32-Bit Microcontroller Applications

2000-03-06
2000-01-1242
The increasing complexity of automotive electronic systems can only be managed by a higher integration of the modules and a high reliability of the individual electronic devices. That means, the number of electronic components on board will decrease and their complexity will increase. This paper describes how to meet the requirements for the power supply of a 32-bit microcontroller based system in an automotive environment.
Technical Paper

The BRAKE Project - Centralized Versus Distributed Redundancy for Brake-by-Wire Systems

2002-03-04
2002-01-0266
This paper presents the objectives and preliminary results of the BRAKE project - a joint effort of Delphi Automotive Systems, Infineon Technologies, Volvo Car Corporation and WindRiver. The objective of this project is to use microelectronics technologies to design a distributed Brake-by-Wire system including: A distributed fault tolerant system for enhanced safety An extension of the OSEK based operating system for a distributed time triggered architecture An open interface between vehicle control, and brake system control The results comprise the requirements, interface specification (see [1]), a full simulation model, a hardware-in-the-loop bench, and a demonstration vehicle. The application has been developed using advanced automatic code generation for Infineon's TriCore based automotive microcontrollers.
X