Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Enhanced Injector Dead Time Compensation by Current Feedback

The constant motivation for lower fuel consumption and emission levels has always been in the minds of most auto makers. Therefore, it is important to have precise control of the fuel being delivered into the engine. Gasoline Port fuel injection has been a matured system for many years and cars sold in emerging markets still favor such system due to its less system complexity and cost. This paper will explain injection control strategy of today during development, and especially the injector dead-time compensation strategy in detail and how further improvements could still be made. The injector current profile behavior will be discussed, and with the use of minimum hardware electronics, this paper will show the way for a new compensation strategy to be adopted.
Journal Article

Mode-Dynamic Task Allocation and Scheduling for an Engine Management Real-Time System Using a Multicore Microcontroller

A variety of methodologies to use embedded multicore controllers efficiently has been discussed in the last years. Several assumptions are usually made in the automotive domain, such as static assignment of tasks to the cores. This paper shows an approach for efficient task allocation depending on different system modes. An engine management system (EMS) is used as application example, and the performance improvement compared to static allocation is assessed. The paper is structured as follows: First the control algorithms for the EMS will be classified according to operating modes. The classified algorithms will be allocated to the cores, depending on the operating mode. We identify mode transition points, allowing a reliable switch without neglecting timing requirements. As a next step, it will be shown that a load distribution by mode-dependent task allocation would be better balanced than a static task allocation.
Technical Paper

The Low Level Driver Design to Improve Dwell Timing of Engine Management System

In Engine Management System, more accurate control is required to improve engine performance. Especially generating the precise ignition signal has a direct effect on better engine performance. In the beginning of this paper, a basic software structure to synchronize the engine crank signal and generate ignition signals will be explained. Several cases which can generate dwell timing error will be introduced based on this software structure. In addition, each impact level for each error case will be described. For cases of major error, compensation ways will be proposed in order to obtain more accurate dwell timing. The compensation ways by both microcontroller hardware and user software will be explained in detail. In conclusion, this paper will show the accuracy of ignition signal which implements proposed compensation ways that can be improved as compared to conventional ignition signal.