Refine Your Search

Topic

Author

Search Results

Technical Paper

6 Speed Automatic Transmission Vibration Magnitude Prediction and Whine Noise Improvement through Transmission System Modeling

2011-05-17
2011-01-1553
As automotive technology has been developed, gear whine has become a prominent contributor for cabin noise as the masking has been decreased. Whine is not the loudest source, but it is of high tonal noise which is often highly unpleasant. The gear noise originates at gear mesh. Transmission Error acts as an excitation source and these vibrations pass through gears, shafts and bearings to the housing which vibrates to produce noise on surrounding air. As microgeometry optimization target to reduce the fundamental excitation source of the noise, it has been favored method to tackle gear whine noise, especially for manual transmission. However, practicality of microgeometry optimization for the planetary gear system has been still in question, because of complex system structure and interaction among multi mesh gear sets make it hard to predict and even harder to improve. In this paper, successful case of whine noise improvement by microgeometry is presented.
Technical Paper

A Case Study on the Improvement of Idle Quality of an SUV Car with DI Diesel Engine

2003-05-05
2003-01-1464
With its advantage on the economic and environmental reason the preference of vehicles with diesel engine is growing in the domestic market as well as European market. And automobile makers are enthusiastic in the development of diesel engine vehicles with more comfortable interior atmosphere in order to meet consumers' requirements. Generally, when compared with gasoline engine, diesel engine has much bigger vibratory input to the mounting structure and produces higher level in interior noise and body vibration. In this paper, the improvement of NVH quality at the idle state of an SUV car with DI diesel engine has been achieved through tuning engine mounts based on TPA (Transfer Path Analysis) for low frequency vibration and interior booming noise.
Technical Paper

A Dynamic GUI Platform for Bluetooth Automotive Application Voice Communication Package

2018-04-03
2018-01-0023
In this paper, a reconfigurable object-oriented simulator is proposed to analyze the performance of Bluetooth Voice Communication Package (VCP) for telecom purposes like hands-free vehicular communication. It consists of a graphical user interface (GUI) for research or validation engineers to investigate system specific performance. For example, a research engineer can utilize this GUI to analyze a system performance using different noise reduction filtering techniques in vehicular hands-free applications. Also, a validation engineer can utilize this GUI to evaluate vehicular Bluetooth audio quality for different vehicles at different driving conditions (e.g. speeds, fan levels, etc.). The proposed Bluetooth VCP model consists of modules like Audio Equalization (EQ), Acoustic Echo Canceller (AEC), and Noise Suppression (NS). This dynamic GUI platform provides the scope to add and analyze new proposed filtering techniques.
Technical Paper

A Novel Method Predicting the Influence of Absorption Material on the Sound Quality of Interior Noise

2017-06-05
2017-01-1885
This paper presents a novel method predicting the variation of sound quality of interior noise depending on the change of the proprieties of absorption materials. At the first, the model predicting the interior noise corresponding to the change of the absorption material in engine room is proposed. Secondly the index to estimate the sound quality of the predicted sound is developed. Thirdly the experimental work has been conducted with seven different materials and validated the newly developed index. Finally, this index is applied for the optimization of absorption material to improve the sound quality of interior noise in a passenger car.
Journal Article

A Novel Method for Objective Evaluation of Interior Sound in a Passenger Car and Its Application to the Design of Interior Sound in a Luxury Passenger Car

2017-06-05
2017-01-1758
Recently the interior sound is actively generated by the active sound design (ASD) device in a passenger car. Therefore, the objective evaluation method for the sound quality of actively designed sounds is required. In previous research, the sound quality of interior sound has been presented with powerful and pleasant for the existing passenger car. This paper presents a novel approach method for the objective evaluation of powerfulness and pleasantness of actively designed interior sound. The powerfulness has been evaluated based on the degreed of modulation and a quantity of low frequency booming of the sound in the paper. On the other hand, the pleasantness is evaluated based on the slope ratio of harmonic orders per octave in frequency domain. These evaluation methods are successfully applied to the objective evaluation of luxury passenger car.
Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

2008-04-14
2008-01-0501
Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
Technical Paper

A Study for Fuel Economy Improvement on Applying New Technology for Torsional Vibration Reduction of Crank Pulley

2013-10-14
2013-01-2514
The method of Front End Auxiliary Drive (FEAD) system optimization can be divided into two ways. One is to use a mechanical device that decouples crank pulley from torsional vibration of crank shaft by using characteristics of spring. The other is to control belt tension through auto-tensioner in addition of alternator pulley device. Because the former case has more potential to reduce belt tension than the latter case, the development of mechanically decoupled crank pulley, despite of its difficulty of development, is getting popular among the industry. This paper characterizes latest crank pulley technologies, Crank Decoupler and Isolation Pulley, for torsional vibration reduction through functionality measurement result which composed of irregularity, slip, tensioner movement, belt span vibration, bearing hubload of idler and so on. Also it investigates their potential of belt tension reduction through steady state point fuel consumption test on dynamometer.
Technical Paper

A Study for Improving the Acoustic Performance of Dash Isolation Pad Using Hollow Fiber

2013-03-25
2013-01-0101
Usually, fibrous materials with porosity can dissipate the energy of the sound wave penetrating them, so can be the useful sound absorbing materials to reduce the noise in the vehicle. The fibrous materials have been used for the various types of automotive components as the sound absorbing materials, which can be placed close to the noise source, in the noise paths and near the receiver such as passengers. Although all materials can absorb a little amount of sound energy, the term “acoustical material” has been primarily applied to those materials that can provide the higher sound absorption performance above the ordinary levels. One of the examples of fibrous acoustic materials for automotive components is the sound absorbing felt composed of the fibers which have the several characteristics such as the material type, the cross-sectional shape and the fiber density (can be expressed as denier) related to the sound absorbing performance.
Journal Article

A Study of Wheel Guards for Reduction of High Frequency Road-Noise

2015-04-14
2015-01-1309
This Study describes about the development of new concept' rear wheel guards for the reduction of Road Noise in the passenger vehicles. The new wheel guards are proposed by various frequency chamber concept and different textile layers concept. Two wheel guards were verified by small cabin resonance and vehicle tests. Through new developing process without vehicle test, Result of road noise will be expected if this concepts and materials of wheel guard are applied into automotive vehicle. As this concept consider tire radiation noise frequency and multilayers sound control multilayers, 2 concepts reduced road noise from 0.5 to 1.0dB. The proposed method of part reverberant absorption is similar to results of vehicle tests by part absorption index. Furthermore, optimization of frequency band in wheel guards will reduce more 0.5 dB noises. As a result of the application of Aimed Helmholtz and Multilayers concept, this paper classifies reduction of the road noise, cost and weights.
Technical Paper

A Study of the Disc Scoring Generation Principle and Reduction(III)

2019-09-15
2019-01-2112
In the latest works [12], we presented the guideline for reducing Metal pick up(MPU, the main component of disc scoring) by controlling the location of the roughness of disc, the brake pad friction coefficients and the disc slot's size. In this study, the previously studied iron transfer theory to 'Cu free' brake pad and the disc surface roughness controlling methods which are based on the mass production manufacturing process are applied. It is possible to suggest the ways to improve the scoring-free disc without reducing friction coefficient between the disc and pad, and any demerit such as increased wear and airplane noise like conventional slot discs [11].
Technical Paper

A Study on the Acoustic Simulation for the Components of an Intake System

2011-05-17
2011-01-1520
The reduction of intake noise is a very important factor in controlling the interior noise levels of vehicles, particularly at low and major engine operating speeds. A vehicle intake system generally consists of air cleaner box, hose, duct, and filter element. Also, resonators and porous duct are included, being used to reduce intake noise. For more accurate estimation of the transmission loss (TL), it seems important to develop a CAE model that accurately describes this system. In this paper, simple methods, which can consider the effects of filter element and vibro-acoustic coupling, are suggested which could remarkably improve estimation accuracy of the TL. The filter element is assumed as equivalent semi-rigid porous materials characterized by the flow resistivity defined by the pressure drop, velocity, and thickness.
Technical Paper

A Study on the Development Process of a Body with High Stiffness

2005-05-16
2005-01-2464
Design optimization of a vehicle is required to increase a product value for noise and vibration performances and for a fuel-efficient car. This paper describes the development process of a high stiffness and lightweight vehicle. A parameter study is carried out at the initial stage of design using the mother car, and a design guide with a good performance is achieved early prior to the development of the proto car. Influences of body stiffness based on the relative weight ratio of the floor and side structures are analyzed. Results show that bending and torsional stiffness has a significant effect on weight distribution ratio. Influences of the distribution of side joint stiffness are analyzed through numerical experiments. Results reveal that the stiffness difference between the upper and lower parts should be small to increase the stiffness of a body.
Technical Paper

A Study on the Influence of Plastic Intake Manifold on the Performance and NVH of In-line 4 Cylinder Gasoline Engine

1998-02-01
980728
The primary purpose of using a plastic material instead of conventional aluminum cast for intake manifold is to reduce its weight and cost. Moreover, the use of plastic for intake manifold is regarded as a key for further development of so called an “intake modular system”. As a secondary effect, the engine power can be increased with the help of improved interior surface roughness and lowered air temperature. With regard to NVH, however, plastic intake manifold is considered somewhat negative since it is less rigid and less dense than aluminum one. In this paper, the mechanism that plastic intake manifold affects the performance and NVH of in-line 4 cylinder gasoline engine is presented. In connection with engine performance, air flow efficiency of not only intake manifold itself but also other components of intake system and also cylinder head is evaluated.
Technical Paper

A Study on the Optimization of Body Structure for Rattle Noise by Exciting Woofer Speakers

2009-05-19
2009-01-2110
With the recent development of technologies for interpreting vibration and noise of vehicles, it has become possible for carmakers to reduce idle vibration and driving noise in the phase of preceding development. Thus, the issue of noise generation is drawing keen attention from production of prototype car through mass-production development. J. D. Power has surveyed the levels of customer satisfaction with all vehicles sold in the U.S. market and released the Initial Quality Study (IQS) index. As a growing number of emotional quality-related items are added to the IQS evaluation index, it is necessary to secure a sufficiently high quality level of low-frequency speaker sound against rattle noise. It is required to make a preceding review on the package tray panel, which is located at the bottom of the rear glass where the woofer speakers of a passenger sedan are installed, the door module panel in which the door speakers are built.
Technical Paper

A Study on the Vehicle Body Effect on Brake Noise

2016-09-18
2016-01-1917
Creep groan noise occurs in a just moving vehicle by the simultaneous application of torque to the wheel and the gradual release of brake pressure in-vehicle. It is the low frequency noise giving the driver a very uncomfortable feeling. Recently, the field claims regarding the creep groan noise are increasing. So far, creep groan noise has been improved by means of chassis modification the transfer system. But vehicle body the response system does not. In this paper, the effect between vibration characteristics of vehicle body, creep groan noise was analyzed. Then presented analysis method for vehicle body effect regarding creep groan noise.
Journal Article

A Systematic Approach to Engine Sound Design for Enhancing Sound Character by Active Sound Design

2017-06-05
2017-01-1756
This paper presents a systematic approach to interior engine sound design for enhancing sound character of car interior sound effectively. Nowadays an active noise control technology is widely used in vehicle industry. Particularly, an active sound design (ASD) technique using vehicle’s audio system for controlling interior sound due to powertrain has become a general method to improve sound quality or character. The ASD system using speakers has the advantage of creating various sounds relatively easy. In this study, the novel systematic approach is proposed to guide the efficient design of powerful and pleasant acceleration sound by order spectrum analysis. At first, primary attributes of powerful and pleasant sound were analyzed and sound concept was derived. Secondly, the optimal linearity and the level envelope of firing order were derived by subjective evaluation.
Journal Article

A Tailgate(Trunk) Control System Based on Acoustic Patterns

2017-03-28
2017-01-1634
When customers use a tailgate (or trunk), some systems such as power tailgate and smart tailgate have been introduced and implemented for improving convenience. However, they still have some problems in some use cases. Some people have to search for the outside button to open the tailgate, or they should take out the key and push a button. In some cases, they should move their leg or wait a few seconds which makes some people feel that it is a long time. In addition, they have to push the small button which is located on the inner trim in order to close the tailgate. This paper proposes a new tailgate control technology and systems based on acoustic patterns in order to solve some inconvenience. An acoustic user interaction (AUI) is a technology which responds to human’s rubbing and tapping on a specific part analyzing the acoustic patterns. The AUI has been recently spotlighted in the automotive industry as well as home appliances, mobile devices, musical instruments, etc.
Journal Article

Active Booming Noise Control for Hybrid Vehicles

2016-04-05
2016-01-1122
Pressure variation during engine combustion generates torque fluctuation that is delivered through the driveline. Torque fluctuation delivered to the tire shakes the vehicle body and causes the body components to vibrate, resulting in booming noise. HKMC (Hyundai Kia Motor Company)’s TMED (Transmission Mounted Electric Device) type generates booming noises due to increased weight from the addition of customized hybrid parts and the absence of a torque converter. Some of the improvements needed to overcome this weakness include reducing the torsion-damper stiffness, adding dynamic dampers, and moving the operation point of the engine from the optimized point. These modifications have some potential negative impacts such as increased cost and sacrificed fuel economy. Here, we introduce a method of reducing lock-up booming noise in an HEV at low engine speed.
Journal Article

An Improvement of Brake Squeal CAE Model Considering Dynamic Contact Pressure Distribution

2015-09-27
2015-01-2691
In the brake system, unevenly distributed disc-pad contact pressure not only leads to a falling-off in braking feeling due to uneven wear of brake pads, but also a main cause of system instability which leads to squeal noise. For this reason there have been several attempts to measure contact pressure distribution. However, only static pressure distribution has been measured in order to estimate the actual pressure distribution. In this study a new test method is designed to quantitatively measure dynamic contact pressure distribution between disc and pad in vehicle testing. The characteristics of dynamic contact pressure distribution are analyzed for various driving conditions and pad shape. Based on those results, CAE model was updated and found to be better in detecting propensity of brake squeal.
Technical Paper

An Optimization of Dual Continuously Variable Valve Timing for Reducing Intake Orifice Noise of a SI Engine

2008-04-14
2008-01-0892
For optimizing the performance of SI engine such as engine torque, fuel consumption, and emissions, various types of system for variable valve timing were developed by many automotive researchers. In this paper, we investigated the relationship between valve timing and intake orifice noise, and suggested how to improve NVH (Noise, Vibration and Harshness) performance as well as engine torque. Some experiments using the engine dynamometer were carried over about 150 different operating conditions. BEM analysis was also conducted in order to calculate acoustic modes of intake system. The results show that the valve timing and overlap of breathing systems have influence on NVH behavior, especially intake orifice noise over whole range of operating conditions. Valve timing and overlap of intake and exhaust valve were optimized in the view of sound quality as well as overall noise level.
X