Refine Your Search

Topic

Author

Search Results

Technical Paper

2D Residual Gas Visualization in an Optical Direct Injection Spark Ignition Engine with IR Laser Absorption

2015-04-14
2015-01-1648
The spatial distribution of internal exhaust gas recirculation (EGR) is evaluated in an optically accessible direct injection spark ignition engine using near infrared laser absorption to visualize the distribution of the H2O molecule. The obtained overall internal exhaust gas recirculation compares well to gas-exchange cycle calculations and the spatial distributions are consistent with those measured with inverse LIF. The experimental procedures described in this report are designed to be simple and rapidly implemented without the need to resort to unusual optical components. The necessary spectral data of the selected absorption line is obtained from the HITEMP database and is validated with prior experiments carried out in a reference cell. Laser speckle in the images is effectively reduced using a ballistic diffuser.
Technical Paper

A New Datadriven Approach to Modeling the Combustion of a Diesel Engine in HCCI Mode

2009-04-20
2009-01-0128
The contribution presents a new data driven modeling approach for diesel HCCI combustion. Input parameters of the combustion model are external actuating variables as for example the start of injection. The model incorporates experimental data of the engine in HCCI mode, in the standard diesel mode and in the transition region between both modes. New disclosed dependencies between characteristic values of the cylinder pressure and the fuel burn rate are used to linearize the combustion model for a given operating point. In this paper the validation of the combustion model is discussed based on dynamic measuring data of the urban part of the NEDC. Finally, the combustion model is integrated in a zero-dimensional diesel engine model.
Technical Paper

A New MOTRONIC System with 16 Bit Micro Controller

1989-08-01
891648
The functionality of engine management systems has grown rapidly over the last few years. The paper presents a new Motronic concept, the engine management control M3. The Motronic family M3 is a modular design destined to control engines with up to eight cylinders individually. The main features of this system and the ECU's concept are discussed.
Technical Paper

A Thermodynamic Study on Boosted HCCI: Experimental Results

2011-04-12
2011-01-0905
Stricter emissions legislation and growing demands for lower fuel consumption require significant efforts to improve combustion efficiency while satisfying the emission quality demands. Controlled Homogeneous Charge Compression Ignition (HCCI) combined with boosted air systems on gasoline engines provides a particularly promising, yet challenging, approach. Naturally aspirated (NA) HCCI has already shown considerable potential in combustion efficiency gains. Nevertheless, since the volumetric efficiency is limited in the NA HCCI operation range due to the hot residuals required to ignite the mixture and slow down reaction kinetics, only part-load operation is feasible in this combustion mode. Considering the future gasoline engine market with growing potentials identified in downsized gasoline engines, it becomes necessary to investigate the synergies and challenges of controlled, boosted HCCI.
Technical Paper

Advanced Engine Misfire Detection for SI-Engines

1997-02-24
970855
This paper presents a system concept for detecting combustion misfire. The relevant research grew out of the more stringent requirements for On-Board Diagnostic systems (OBDII) mandated by the California Air Resources Board (CARB), effective as of model year 1997 onward. The system concept is based on evaluation of variations in crankshaft speed. Processes using engine roughness are applied in non-critical operating areas and/or on engines with a small number of cylinders. The modulation process is used in more critical areas. Research was done using a 12-cylinder engine and indicated the potential to comply with the California Air Resources Board's regulations for the model year (MY) 1997 and later.
Technical Paper

Analysis of the Combustion Mode Switch Between SI and Gasoline HCCI

2012-04-16
2012-01-1105
The worldwide stricter emission legislation and growing demands for lower fuel consumption require for significant efforts to improve combustion efficiency while satisfying the emission quality demands. Homogeneous Charge Compression Ignition (HCCI) on gasoline engines provides a particularly promising and, at the same time, challenging approach, especially regarding the combustion mode switch between spark-ignited (SI) and gasoline HCCI mode and vice-versa. Naturally aspirated (n.a.) HCCI shows considerable potential, but the operation range is air breathing limited due to hot residuals required for auto-ignition and to slow down reaction kinetics. Therefore it is limited to part-load operation. Considering the future gasoline engine market with growing potentials identified on downsized gasoline engines, it is imperative to investigate the synergies and challenges of boosted HCCI.
Technical Paper

Analysis of the In-Cylinder Flow Field / Spray Injection Interaction within a DISI IC Engine Using High-Speed PIV

2011-04-12
2011-01-1288
This study presents measurements of transient flow field and spray structures inside an optically accessible DISI (direct-injection spark-ignition) internal combustion engine. The flow field has a direct effect upon mixture and combustion processes. Given the need to increase the efficiency and performance of modern IC engines and thus reduce emissions a detailed understanding of the flow field is necessary. The method of choice was high-speed two-component particle image velocimetry (PIV) imaging a large field of view (43 x 44 mm₂). To capture the temporal evolution of the main flow features the repetition rate was set to 6 kHz which resolves one image per 1° crank angle (CA) at 1000 rpm. The crank angle range recorded was the latter half of the compression stroke at various engine speeds as well as various charge motions (neutral, tumble and swirl). Moreover, consecutive cycles were recorded allowing a detailed investigation of cycle-to-cycle variations.
Technical Paper

Challenge Determining a Combustion System Concept for Downsized SI-engines - Comparison and Evaluation of Several Options for a Boosted 2-cylinder SI-engine

2013-04-08
2013-01-1730
To meet future CO₂ emissions limits and satisfy the bounds set by exhaust gas legislation reducing the engine displacement while maintaining the power output ("Downsizing") becomes of more and more importance in the SI engine development process. The total number of cylinders per engine has to be reduced to keep the thermodynamic disadvantages of a small combustion chamber layout as small as possible. Doing so new challenges arise concerning the mechanical design, the design of the combustion system concept as well as strategies maintaining a satisfying transient torque behavior. To address these challenges a turbocharged 2-cylinder SI engine was designed for research purposes by Weber Motor GmbH and Robert Bosch GmbH. The design process was described in detail in last year's paper SAE 2012-01-0832. Since the engine design is very modular it allows for several different engine layouts which can be examined and evaluated.
Technical Paper

Common Rail Injection System for Commercial Diesel Vehicles

1997-02-24
970345
Common Rail provides additional flexibility for the design and application of a diesel injection system. Contrary to conventional injection systems pressure generation and injection are decoupled in the common rail system. The injection pressure can be selected independent of engine speed and injected fuel quantity within certain limits. The fuel combustion and the corresponding noise can be improved by increasing the fuel pressure up to 1400 bar and introducing pilot injection or multiple injection. Furthermore the common rail system can replace conventional injection systems without requiring major engine modifications. BOSCH will provide this new injection system for the whole range of applications from light duty (30 kW per cylinder) to heavy duty vehicles (50 kW per cylinder).
Technical Paper

Crank Angle Resolved Determination of Fuel Concentration and Air/Fuel Ratio in a SI-Internal Combustion Engine Using a Modified Optical Spark Plug

2007-04-16
2007-01-0644
A fiber optical sensor system was used to detect the local fuel concentration in the vicinity of the spark position in a cylinder of a four-stroke SI production engine. The fuel concentration was determined by the infrared absorption method, which allows crank angle resolved fuel concentration measurements during multiple successive engine cycles. The sensor detects the attenuation of infrared radiation in the 3.4 μm wavelength region due to the infrared vibrational-rotational absorption band of hydrocarbons (HC). The absorption path was integrated in a modified spark plug and a tungsten halide lamp was used as an infrared light source. All investigations were carried out on a four-stroke spark ignition engine with fuel injection into the intake manifold. The measurements were made under starting conditions of the engine, which means a low engine speed. The engine operated with common gasoline (Euro Super) at different air/fuel-ratios.
Journal Article

Data Based Cylinder Pressure Modeling for Direct-injection Diesel Engines

2009-04-20
2009-01-0679
In this article a new zero-dimensional model is presented for simulating the cylinder pressure in direct injection diesel engines. The model enables the representation of current combustion processes considering multiple injections, high exhaust gas recirculation rates, and turbocharging. In these methods solely cycle-resolved, scalar input variables from the electronic control unit in combination with empirical parameters are required for modeling. The latter are adapted automatically to different engines or modified applications using measured cylinder pressure traces. The verification based on measurements within the entire operating range from engines of different size and type proves the universal applicability and high accuracy of the proposed method.
Technical Paper

Design of a Boosted 2-Cylinder SI-Engine with Gasoline Direct Injection to Define the Needs of Future Powertrains

2012-04-16
2012-01-0832
To meet future CO₂ emissions limits and satisfy the bounds set by exhaust gas legislation reducing the engine displacement while maintaining the power output ("Downsizing") becomes of more and more importance to the SI-engine development process. The total number of cylinders per engine has to be reduced to keep the thermodynamic disadvantages of a small combustion chamber layout as small as possible. Doing so leads to new challenges concerning the mechanical design, the design of the combustion system concept as well as strategies maintaining a satisfying transient torque behavior. To address these challenges a turbocharged 2-cylinder SI engine with gasoline direct injection was designed for research purposes by Weber Motor and Bosch. This paper wants to offer an insight in the design process. The mechanical design as well as the combustion system concept process will be discussed.
Technical Paper

Electroformed Multilayer Orifice Plate for Improved Fuel Injection Characteristics

1997-02-24
971070
A new orifice plate (OP) for advanced fuel injection characteristics is presented. The OP is designed to optimize the air-fuel mixture generation and transportation within individually shaped manifold geometries of spark-ignition engines. To generate the suitable spray characteristics, the basic OP design and its flow characteristics have some features originating from the well known turbulence nozzle principle: Turbulence generating flow deflections within the OP are achieved by superimposing layers containing flow cavities, which are displaced from one another. The flow deflections effect atomization and define the spatial spray beam orientation. A great variety and a high volume of precisely structured, low cost OPs can be produced daily by micromachining the layers in electroformed nickel. The flow cavities and outer dimensions of each layer are shaped by photo-resist structures.
Journal Article

Engine Start-Up Optimization using the Transient Burn Rate Analysis

2011-04-12
2011-01-0125
The introduction of CO₂-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emission legislation require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes an explicit thermodynamic analysis of the combustion process during the start-up necessary. Initially, the well-known thermodynamic analysis of in-cylinder pressure at stationary condition was transmitted to the highly non-stationary engine start-up. There, the current models for calculation of the transient wall heat fluxes were found to be misleading. Therefore, adaptations to the start-up conditions of the known models by Woschni, Hohenberg and Bargende were introduced for calculation of the wall heat transfer coefficient in SI engines with gasoline direct injection. This paper shows how the indicated values can be measured during the engine start-up.
Journal Article

Estimation of Cylinder-Wise Combustion Features from Engine Speed and Cylinder Pressure

2008-04-14
2008-01-0290
Advanced engine control and diagnosis strategies for internal combustion engines need accurate feedback information from the combustion engine. The feedback information can be utilized to control combustion features which allow the improvement of engine's efficiency through real-time control and diagnosis of the combustion process. This article describes a new method for combustion phase and IMEP estimation using one in-cylinder pressure and engine speed. In order to take torsional deflections of the crankshaft into account a gray-box model of the crankshaft is identified by subspace identification. The modeling accuracy is compared to a stiff physical crankshaft model. For combustion feature estimation, the identified MISO (multiple input single output) system is inverted. Experiments for a four-cylinder spark-ignition engine show the superior performance of the new method for combustion feature estimation compared to a stiff model approach.
Technical Paper

Experimental Measurement Techniques to Optimize Design of Gasoline Injection Valves

1992-02-01
920520
In order to reduce the spark-ignition engine exhaust-gas emission and fuel consumption, it is essential that the required air/fuel ratio is maintained under all operating conditions. An important contribution to this claim is delivered by the injection valve by metering the fuel precisely and producing fine atomization. In this report experimental methods to get specific measuring information and methods for optimizing flow in injection valves are described. Original valves as well as large-scale models were used for the investigations concerning the steady and unsteady-flow characteristics, and were equipped with a number of different sensors. Holograms of the short-time recording of the spray cone are generated and used for the quantification of the atomization quality when injecting into atmospheric pressure and into vacuum, thus complying with the conditions encountered in the engine intake-manifold.
Technical Paper

FEM Approximation of Internal Combustion Chambers for Knock Investigations

2002-03-04
2002-01-0237
The resonances of SI engine combustion chambers are slightly excited during normal combustion but strongly excited by knock. In order to avoid knocking combustions extensive knowledge about knock and its effects is necessary. In this paper the combustion chamber of a serial production engine is modeled by finite elements. Modal analyses are performed in order to gain information about the resonances, their frequencies, and their frequency and amplitude modulations. Simulation results are compared to measured data using a high-resolution time-frequency method. Furthermore, a connection between knock origin and the excitation of the resonances is postulated applying transient analyses.
Technical Paper

GDI: Interaction Between Mixture Preparation, Combustion System and Injector Performance

1998-02-23
980498
The development of future engine generations for Gasoline Direct Injection requires sophisticated combustion systems to reach reduced fuel consumption and future emission standards. The design process of these combustion systems has to be based on a fundamental knowledge of the interacting mixture preparation mechanisms. Beside the air motion inside the cylinder mixture preparation is mainly feeded by the fuel spray quality, injector performance respectively. The article therefore presents a fundamental analysis of the GDI mixture preparation and affords an insight into the injector development. Comprehensive experimental studies were performed in high pressure/temperature vessels using Phase Doppler Anemometry, Laser Induced Fluorescence and video techniques to define the significant fuel spray features for GDI. CFD-calculations were additionally applied to study the temporal behavior of the mixture preparation under injection parameter variation.
Technical Paper

IMEP-Estimation and In-Cylinder Pressure Reconstruction for Multicylinder SI-Engine by Combined Processing of Engine Speed and One Cylinder Pressure

2005-04-11
2005-01-0053
In order to optimize the performance and emission of engines, advanced control and diagnostic systems require detailed feedback information about the combustion process. In this context, cost-effective solutions are of interest. The contribution describes a method for reconstructing cylinder-individual features of each combustion cycle by processing the instantaneous fluctuations of the engine speed and the in-cylinder pressure of one cylinder. Model-based torque estimation, analyzing both of the signals simultaneously, provides an accurate estimation of the mean indicated pressure. Using this method, a new algorithm for advanced misfire detection is presented. Furthermore, a new pressure model with a feasible number of parameters is proposed. It is combined with the torque estimation in order to reconstruct the unknown pressure traces of the cylinders not equipped with sensors.
X