Refine Your Search

Topic

Search Results

Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
Technical Paper

A Grammatical Evolution Approach to System Identification of Laser Lap Welding

2006-04-03
2006-01-1614
Laser lap welding quality is a non-linear response based on a host of categorical and numeric material and process variables. This paper describes a Grammatical Evolution approach to the structure identification of the laser lap welding process and compares its performance with linear regression and a neuro-fuzzy inference system.
Technical Paper

A Minimum-Effort Motion Algorithm for Digital Human Models

2003-06-17
2003-01-2228
A new realistic motion control algorithm for digital human models is presented in this paper based on the principle of effort minimization. The proposed algorithm is developed through an innovative mathematical model to make the applications more flexible and more global, especially for the visualization of human motions in automotive assembly operations. The central idea of this unique model is to interpret the solution of the homogeneous Lagrange equation for a mannequin as the origin of dynamic motion. Furthermore, a digital human possesses about 42 joints over the main body except the head, fingers and toes, and offers a large room of kinematic redundancy. We have found 14 new 3-D independent motion markers assigned over the human body to constitute a Cartesian coordinate system, under which a minimum-effort based dynamic control scheme is developed using a state-feedback linearization procedure.
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

Air Bag Loading on In-Position Hybrid III Dummy Neck

2001-03-05
2001-01-0179
The Hybrid III family of dummies is used to estimate the response of an occupant during a crash. One recent area of interest is the response of the neck during air bag loading. The biomechanical response of the Hybrid III dummy's neck was based on inertial loading during crash events, when the dummy is restrained by a seat belt and/or seat back. Contact loading resulting from an air bag was not considered when the Hybrid III dummy was designed. This paper considers the effect of air bag loading on the 5th percentile female Hybrid III dummies. The response of the neck is presented in comparison to currently accepted biomechanical corridors. The Hybrid III dummy neck was designed with primary emphasis on appropriate flexion and extension responses using the corridors proposed by Mertz and Patrick. They formulated the mechanical performance requirements of the neck as the relationship between the moment at the occipital condyles and the rotation of the head relative to the torso.
Technical Paper

Application of Multi-Parameter and Boundary Mannequin Techniques in Automotive Assembly Process

2003-06-17
2003-01-2198
This paper deals with the multi-parameter and boundary mannequin techniques in creating human models in automotive applications. The concepts and applications of single-parameter, multiple parameter and boundary mannequin method are discussed respectively to clarify certain confusion. Emphasis is put on how to create boundary mannequins for a specific application, which may have been puzzling many engineers in practical applications. The authors would like to share their experience in using the digital human modeling software and make discussions on some common issues. A number of case studies from typical automotive manufacturing assembly operations are also presented to demonstrate the usage of the multi-parameter and boundary mannequin techniques.
Technical Paper

Comparison of Parametric and Non-Parametric Methods for Determining Injury Risk

2003-03-03
2003-01-1362
This paper contains a review of methods for deriving risk curves from biomechanical data obtained from impact experiments on human surrogates. It covers many of the problems and pitfalls of obtaining realistic human risk curves from impact experiments. The strength and weakness of both parametric and non-parametric methods are evaluated. The limitations of standard analysis of censored impact test data are presented. Methods are given for determining risk curves from both doubly censored data and data obtained from impacts to body regions in which there are more than one mechanism of injury. A detailed set of examples is presented in which different experimental data are analyzed using the Consistent Threshold method and the logistic approach. Finally risk curves for published data are presented for the femur, head, thorax, and neck.
Technical Paper

Computer Aided Simulations in Machining Applications

2005-04-11
2005-01-0518
Computer applications have been widely used to assist product design. The successes and sophistication of computer aided engineering (CAE) techniques are respectfully recognized in this field. CAE applications in the manufacturing area however are still developing, although the manufacturing community is increasingly starting to pay attentions to computer simulations in its daily workings. This paper will briefly introduce some of these applications and promote awareness of computer simulations in manufacturing area. It contains four main sections: finite element analysis (FEA) in machining fixture design, FEA applications in component assembly, machining process simulations and machining vibrations in the milling operation. Each section comes with a practical case study, potential benefits are identified and conclusions are presented by using an integrated design and analysis approach.
Technical Paper

Emergency Oxygen System Evaluation for Exploration PLSS Applications

2006-07-17
2006-01-2208
The Portable Life Support System (PLSS) emergency oxygen system is being reexamined for the next generation of suits. These suits will be used for transit to Low Earth Orbit, the Moon and to Mars as well as on the surface of the Moon and Mars. Currently, the plan is that there will be two different sets of suits, but there is a strong desire for commonality between them for construction purposes. The main purpose of this paper is to evaluate what the emergency PLSS requirements are and how they might best be implemented. Options under consideration are enlarging the tanks on the PLSS, finding an alternate method of storage/delivery, or providing additional O2 from an external source. The system that shows the most promise is the cryogenic oxygen system with a composite dewar which uses a buddy system to split the necessary oxygen between two astronauts.
Technical Paper

Front Impact Pulse Severity Assessment Methodology

2005-04-11
2005-01-1416
The pulse severities from various vehicle impact tests need to be assessed during the impact structure development and targeting stage to assure that the occupants can meet the injury criteria as required. The conventional method using TTZV (time to zero velocity), TDC (total dynamic crush), and G1/G2 (two stage averaged pulse) is often unable to give a quick and clear answer to the question being raised. A simple numerical tool is developed here to assess the pulse severity with a single parameter in which the severity is expressed as the amount of chest travel under a certain target restraint curve or chest A-D curve. The tool is applied to several front impact vehicle pulses to show the effectiveness. The new method developed here can be used to assess the pulse severity in an easy and objective way along with conventional parameters.
Technical Paper

Grammatical Evolution Based Tool for Predicting Multivariable Response Surface for Laser Lap Welding

2008-04-14
2008-01-1372
The problem of predicting the quality of weld is critical to manufacturing. A great deal of data is collected under multiple conditions to predict the quality. The data generated at Daimler Chrysler has been used to develop a model based on grammatical evolution. Grammatical Evolution Technique is based on Genetic Algorithms and generates rules from the data which fit the data. This paper describes the development of a software tool that enables the user to choose input variables such as the metal types of top and bottom layers and their thickness, intensity and speed of laser beam, to generate a three dimensional map showing weld quality. A 3D weld quality surface can be generated in response to any of the two input variables picked from the set of defining input parameters. This tool will enable the user to pick the right set of input conditions to get an optimal weld quality. The tool is developed in Matlab with Graphical User Interface for the ease of operation.
Technical Paper

Injection Molded, Extruded-In-Color Film Fascia

2003-03-03
2003-01-1126
A new multi-layer co-extruded in-color Ionomer film is developed to provide an alternative decoration process to replace paint on Dodge Neon Fascias. The Ionomer film provides a high-gloss “class-A” surface in both non-metallic and metallic colors that match the car body paint finish. Using the Ionomer film to decorate fascias reduces cost; eliminates VOCs; increases manufacturing flexibility and improves performance (weatherability and durability). The molding process consists of thermoforming a film blank and injection molding Polypropylene or TPO behind the film. The paper will include the background, the benefits, the technology development objectives, the film materials development, tooling optimization, film fascia processing (co-extrusion; thermoforming and injection molding) and validation testing of the film.
Technical Paper

Inline Monitoring and Evaluation of Inorganic Gases from a Nitrification Membrane Bioreactor

2005-07-11
2005-01-3021
Integration of the water and air treatment systems in confined habitats for extended duration space missions will require characterization of the constituents in the gases produced by biological water processors. A membrane bioreactor was constructed to accomplish nitrification as part of a denitrification-nitrification biological water processor to treat a simulated early planetary base wastewater. A gas chromatograph was installed inline to the influent and effluent gas lines of the membrane bioreactor to monitor nitrogen, oxygen, carbon dioxide and nitrous oxide. The inline monitoring system enabled sampling of gas effluent from the lumen of the membranes and from a gas-liquid separator. Mass flow of the gas streams was also measured to enable calculation of the mass flow rates of the four inorganic gases.
Technical Paper

Laminated Steel Forming Modeling Techniques and Experimental Verifications

2003-03-03
2003-01-0689
Laminated steel sheets sandwiched with a polymer core are increasingly used for automotive applications due to their vibration and sound damping properties. However, it has become a major challenge in finite element modeling of laminated steel structures and forming processes due to the extremely large differences in mechanical properties and in the gauges of the polymer core and the steel skins. In this study, circular cup deep drawing and V-bending experiments using laminated steels were conducted in order to develop a modeling technique for laminate forming processes. The effectiveness of several finite element modeling techniques was investigated using the commercial FEM code LS-Dyna. Furthermore, two production parts were selected to verify the modeling techniques in real world applications.
Technical Paper

Modal Overlap at Low Frequencies - A Stochastic Approach for Vehicle System Modal Management

2003-05-05
2003-01-1612
In the early stages of a vehicle program, it is a common practice to set target ranges for the global body, suspension and powertrain modes. This modal management process allows engineers to avoid potential noise and vibration problems stemming from strong overlap of major global modes. Before the first prototype hardware is built, finite element models of the body, suspension and powertrain are usually exercised to compare predicted versus targeted ranges of the major system modes in the form of a modal management chart. However, uncertainty associated with the design parameters, manufacturing process and other sources can lead to a major departure from the design intent when the first hardware prototype is built. In this study, a first order reliability method is used to predict variance of the eigen values due to parameter uncertainties. This allows the CAE engineers to add a “three sigma” bound on the eigen values reported in the modal management chart.
Technical Paper

Multi-Mannequin Coordination and Communication in Digital Workcells

2003-06-17
2003-01-2197
It is commonly known that in an automotive manufacturing assembly line several workers perform either a common task or a number of different tasks simultaneously, and there is a need to represent such a multi-worker operation realistically in a digital environment. In the past years, most digital human modeling applications were limited only in a single worker case. This paper presents how to simulate multi-worker operations in a digital workcell. To establish an effective communication and interaction between the mannequins, some existing commercial software package has provided a digital input/output mechanism. The motion for each mannequin is often programmed independently, but can be interrupted anytime by the other digital human models or devices via a communication channel.
Technical Paper

Optimization of Head Impact Waveform to Minimize HIC

2007-04-16
2007-01-0759
To mitigate head impact injuries of vehicle occupants in impact accidents, the FMVSS 201 requires padding of vehicle interior so that under the free-moving-head-form impact, the head injury criterion (HIC) is below the limit. More recently, pedestrian head impact on the vehicle bonnet has been a subject being studied and regulated as requirements to the automobile manufacturers. Over the years, the square wave has been considered as the best waveform for head impacts, although it is impractical to achieve. This paper revisits the head impact topic and challenges the optimality of aiming at the square waveform. It studies several different simple waveforms, with the objective to achieve minimal HIC or minimal crush space required in head-form impacts. With that it is found that many other waveforms can be more efficient and more practical than the square wave, especially for the pedestrian impact.
Technical Paper

Press-Line Simulation in Stamping Process

2004-03-08
2004-01-1047
The automotive industry is rapidly implementing computer simulation in every aspect of their processes mainly to decrease the time required to bring new models to market. Computer simulation can also be used to reduce the cost of vehicle development and manufacturing. A major portion of the manufacturing cost associated with automotive stamping lies in the process design, build and tryout of production dies and in automation of the transfer equipment. Press home-line tryout is largely a trial-and-error process relying heavily on the skills and experience of tool and die makers. To reduce this dependence on human skills and effort, press-line simulation can be effectively utilized to verify the design accuracy thereby reducing the changes needed to rework the production die/tool. The entire press-line with all its complete accessories can be modeled and checked for design errors similar to the try-out conducted in the production plant.
Technical Paper

Sensitivities of Suspension Bushings on Vehicle Impact Harshness Performances

2005-04-11
2005-01-0827
In this paper, we study the sensitivity of a vehicle impact harshness (IH) performance to the suspension bushing rates. A mid-sized uni-body SUV is selected for this study, with the acceleration responses at the driver seat track and the steering wheel as objective functions. A sensitivity study is conducted using an ADAMS full vehicle model including a tire model and flexible body structure representation over an IH event. The study resulted in the identification of key bushings that affect the IH performance and its sensitivity to the bushing rates. Based on the results, we came-up with an “optimal” bushing set that minimizes impact harshness, which was subjectively verified to result in significant improvement in IH.
Technical Paper

Simulation of Hot Stamping Process With Advanced Material Modeling

2004-03-08
2004-01-0168
Advanced material modeling was conducted to describe the thermal-mechanical behavior of Boron Steel during hot stamping, a process in which blanks at 900 °C are formed and quenched between cold dies. Plastic deformation, thermal dilatation and phase transformation were incorporated in the constitutive model and a user-defined subroutine was developed to interface with LS-DYNA. Simulation was conducted on the hot stamping process of a door intrusion beam to gain insight into the physics of the process. Results showed significant influence of the thermal cycle on final product. It was also demonstrated that the program developed can be used as an early feasibility tool to determine baseline processing parameters and to detect potential defects in products without physical prototyping.
X