Refine Your Search

Topic

Author

Search Results

Technical Paper

A Simulation Approach for Vehicle Life-Time Thermal Analysis Applied to a HEV Battery System

2016-04-05
2016-01-0201
In order to meet current and future emission and CO2 targets, an efficient vehicle thermal management system is one of the key factors in conventional as well as in electrified powertrains. Global vehicle simulation is already a well-established tool to support the vehicle development process. In contrast to conventional vehicles, electrified powertrains offer an additional challenge to the thermal conditioning: the durability of E-components is not only influenced by temperature peaks but also by the duration and amplitude of temperature swings as well as temperature gradients within the components during their lifetime. Keeping all components always at the preferred lowest temperature level to avoid ageing under any conditions (driving, parking, etc.) will result in very high energy consumption which is in contradiction to the efficiency targets.
Technical Paper

Active Noise Cancellation System to Tackle Charge Sustain Idle Noise in a PHEV Vehicle

2018-06-13
2018-01-1562
With the advent of PHEV vehicles OEMs face additional NVH issues. A particularly new issue is a low frequency booming noise caused during charging of batteries using the internal combustion engine. During charging the engine is operated at low rotational speeds and high loads, leading to pronounced low frequency noise. While in the past reducing low frequency noise either required large absorbers and/or heavy dampers, today the issue can be tackled by use of an Active Noise Cancellation system. Jaguar Land Rover decided to introduce an Active Noise Cancellation system in the PHEV variants of some of their vehicles. The system builds upon software by Müller-BBM Active Sound Technology GmbH and makes use of the existing audio amplifiers. The only extra hardware component required are microphones in the vehicle headliner.
Journal Article

An Overview of the Effects of Ethanol-Gasoline Blends on SI Engine Performance, Fuel Efficiency, and Emissions

2013-04-08
2013-01-1635
This paper provides an overview of the effects of blending ethanol with gasoline for use in spark ignition engines. The overview is written from the perspective of considering a future ethanol-gasoline blend for use in vehicles that have been designed to accommodate such a fuel. Therefore discussion of the effects of ethanol-gasoline blends on older legacy vehicles is not included. As background, highlights of future emissions regulations are discussed. The effects on fuel properties of blending ethanol and gasoline are described. The substantial increase in knock resistance and full load performance associated with the addition of ethanol to gasoline is illustrated with example data. Aspects of fuel efficiency enabled by increased ethanol content are reviewed, including downsizing and downspeeding opportunities, increased compression ratio, fundamental effects associated with ethanol combustion, and reduced enrichment requirement at high speed/high load conditions.
Technical Paper

Artificial Neural Network-Based Emission Control for Future ICE Concepts

2023-10-31
2023-01-1605
The internal combustion engine contains several actuators to control engine performance and emissions. These are controlled within the engine ECU and follow a specific operating strategy to achieve objectives such as NOx reduction and fuel economy. However, these two goals are conflicting and a compromise is required. The operating state depends on system constraints such as engine speed, load, temperature levels, and aftertreatment system efficiency. This results in constantly changing target values to stay within the defined limits, especially the legal emission limits. The conventional approach is to use multiple operating modes. Each mode represents a specific compromise and is activated accordingly. Multiple modes are required to meet emissions regulations under all required conditions, which increases the calibration effort. This new control approach uses an artificial neural network to replace the conventional multiple mode approach.
Technical Paper

Calibrating BEV and HEV Powertrains for Dynamic Performance Targets

2021-09-05
2021-24-0100
Calibrating a vehicle’s powertrain for dynamic operation needs to focus on efforts to mitigate the risks of thermal overload which may arise in the stator or rotor components of an e-motor. Risks also may arise for expected NVH or durability targets, with torque and torque “oscillations” acting as primary sources for the vehicles’ NVH behavior. Both topics, temperature measurement of stator and rotor as well as dynamic torque measurements of the powertrain’s drive shaft are addressed with examples demonstrating the sensors applications in normal test bed and vehicle configurations.
Technical Paper

Challenges and Opportunities in Variant Calibration of Hybrid Vehicles

2014-10-13
2014-01-2889
The automotive industry is racing to introduce some degree of hybridization into their product ranges. Since the term “hybrid vehicle” can cover a wide range of differing technologies and drivetrain topologies, this has led to a large amount of vehicles that call themselves “hybrid”. This poses an interesting challenge for marketers to differentiate these vehicles from the incumbents. However, it is not just the marketers who are faced with challenges, the developers of such hybrid drivetrains are faced with a rise in technical complexity due to the wide range of operating modes hybridization introduces. As propulsive torque is being generated in more than one place in a hybrid vehicle, the transitions from conventional drive to electrically supported drive bring with them complex aspects of multi-dimensional system control. The challenge is to be able to implement hybrid technology in an existing drivetrain, while adapting the existing components as required.
Technical Paper

Challenges and Opportunities of Variant Calibration of Hybrid Vehicles

2013-03-25
2013-01-0128
The automotive industry is racing to introduce some degree of hybridization into their product ranges. Since the term "hybrid vehicle" can cover a wide range of differing technologies and drivetrain topologies, this has led to a plethora of vehicles that call them "hybrid." This poses an interesting challenge for marketers to differentiate these vehicles from the incumbents. However, it is not just the marketers who are faced with challenges, the developers of such hybrid drivetrains are faced with a rise in technical complexity due to the wide range of operating modes hybridization introduces. As propulsive torque is being generated in more than one place in a hybrid vehicle, the transitions from conventional drive to electrically supported drive bring with them complex aspects of multi-dimensional system control. The challenge is to be able to implement hybrid technology in an existing drivetrain, while adapting the existing components as required.
Technical Paper

Characterizing Thermal Behavior of an Air-Cooled Lithium-Ion Battery System for Hybrid Electrical Vehicle Applications Using Finite Element Analysis Approach

2013-04-08
2013-01-1520
Thermal behavior of a Lithium-ion (Li-ion) battery module under a user-defined cycle corresponding to hybrid electrical vehicle (HEV) applications is analyzed. The module is stacked with 12 high-power 8Ah pouch Li-ion battery cells connected in series electrically. The cells are cooled indirectly with air through aluminum cooling plate sandwiched between each pair of cells. The cooling plate has extended cooling surfaces exposed in the cooling air flow channel. Thermal behavior of the battery system under a user specified electrical-load cycle for the target hybrid vehicle is characterized with the equivalent continuous load profile using a 3D finite element analysis (FEA) model for battery cooling. Analysis results are compared with measurements. Good agreement is observed between the simulated and measured cell temperatures. Improvement of the cooling system design is also studied with assistance of the battery cooling analyses.
Technical Paper

Comparative Study of Thermal Characteristics of Lithium-ion Batteries for Vehicle Applications

2011-04-12
2011-01-0668
Lithium ion batteries can be developed for vehicle applications from high power specification to high energy specification. Thermal response of a battery cell is the main factor to be considered for battery selection in the design of an electrified vehicle because some materials in the cells have low thermal stability and they may become thermally unstable when their working temperature becomes higher than the upper limit of allowed operating range. In this paper the thermal characteristics of different sizes and forms of commercially available batteries is investigated through electro-thermal analysis. The relation between cell capacity and cell internal resistance is also studied. The authors find that certain criteria can be defined for battery selection for electric vehicles, hybrid electric vehicles and plug-in hybrid electric vehicles. These criteria can be served as design guidelines for battery development for vehicle applications.
Technical Paper

Concept Study of a 48V-Hybrid-Powertrain for L-Category Vehicles with Longitudinal Dynamic Simulation and Design of Experiments

2022-03-29
2022-01-0672
The demand for high efficiency powertrains in automotive engineering is further increasing, with hybrid powertrains being a feasible option to cope with new legislations. So far hybridization has only played a minor role for L-category vehicles. Focusing on an exemplary high-power L-category on-road vehicle, this research aims to show a new development approach, which combines longitudinal dynamic simulation (LDS) with “Design of Experiments” (DoE) in course of hybrid electric powertrain development. Furthermore, addressing the technological aspect, this paper points out how such a vehicle can benefit from 48V-hybridization of its already existing internal combustion powertrain. A fully parametric LDS model is built in Matlab/Simulink, with exchangeable powertrain components and an adaptable hybrid operation strategy. Beforehand, characterizing decisions as to focus on 48V and on parallel hybrid architecture are made.
Technical Paper

Concepts for Mechanical Abuse Testing of High-Voltage Batteries

2012-04-16
2012-01-0124
Currently lithium-batteries are the most promising electrical-energy storage technology in fully-electric and hybrid vehicles. A crashworthy battery-design is among the numerous challenges development of electric-vehicles has to face. Besides of safe normal operation, the battery-design shall provide marginal threat to human health and environment in case of mechanical damage. Numerous mechanical abuse-tests were performed to identify load limits and the battery's response to damage. Cost-efficient testing is provided by taking into account that the battery-system's response to abuse might already be observed at a lower integration-level, not requiring testing of the entire pack. The most feasible tests and configurations were compiled and discussed. Adaptions of and additions to existing requirements and test-procedures as defined in standards are pointed out. Critical conditions that can occur during and after testing set new requirements to labs and test-rigs.
Technical Paper

Development of New I3 1.0L Turbocharged DI Gasoline Engine

2017-10-08
2017-01-2424
In recent years, more attentions have been paid to stringent legislations on fuel consumption and emissions. Turbocharged downsized gasoline direct injection (DI) engines are playing an increasing important role in OEM’s powertrain strategies and engine product portfolio. Dongfeng Motor (DFM) has developed a new 1.0 liter 3-cylinder Turbocharged gasoline DI (TGDI) engine (hereinafter referred to as C10TD) to meet the requirements of China 4th stage fuel consumption regulations and the China 6 emission standards. In this paper, the concept of the C10TD engine is explained to meet the powerful performance (torque 190Nm/1500-4500rpm and power 95kW/5500rpm), excellent part-load BSFC and NVH targets to ensure the drivers could enjoy the powerful output in quiet and comfortable environment without concerns about the fuel cost and pollution.
Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

2010-04-12
2010-01-0585
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Journal Article

Electro-Thermal Modeling of a Lithium-ion Battery System

2010-10-25
2010-01-2204
Lithium-ion (Li-ion) batteries are becoming widely used high-energy sources and a replacement of the Nickel Metal Hydride batteries in electric vehicles (EV), hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Because of their light weight and high energy density, Li-ion cells can significantly reduce the weight and volume of the battery packs for EVs, HEVs and PHEVs. Some materials in the Li-ion cells have low thermal stabilities and they may become thermally unstable when their working temperature becomes higher than the upper limit of allowed operating temperature range. Thus, the cell working temperature has a significant impact on the life of Li-ion batteries. A proper control of the cell working temperature is crucial to the safety of the battery system and improving the battery life. This paper outlines an approach for the thermal analysis of Li-ion battery cells and modules.
Technical Paper

Generic software architecture for cost efficient powertrain electrification

2015-04-14
2015-01-1630
Hybrid-electric vehicles provide additional functionality compared to conventional vehicles. So-called ‘hybrid’ software functions are required to coordinate the conventional powertrain control and these additional control functions. A key factor to reduce the fuel consumption lies in optimal control of the entire interconnected powertrain. This paper aims to provide a framework for efficient interface definition, connection and coordination of control units for hybrid electric vehicles. Such a framework supports an efficient development of control unit architectures and the distribution of software functions. The generic approach necessitates modular software functions. It defines the distribution of these functions in control units optimized with respect to reuse, interfaces and compatibility with different powertrain topologies and electrification variants, especially also considering compatibility with a conventional powertrain and its electric hybridization.
Technical Paper

HEV Evaluation in Simulation Phase Based on Predicted Sound Behavior

2020-09-30
2020-01-1511
Grown interest in complex modern Hybrid Electric Vehicle (HEV) concepts has raised new challenges in the field of NVH. The switch between the Internal Combustion Engine (ICE) and the Electric Motor (EM) at low speeds produces undesirable vibrations and a sudden raise of noise levels that effects the sound quality and passenger comfort achieved by the close-to-silent electric powertrain operation. Starting the ICE in the most suitable driving situation to create a seamless transition between driving modes can be the key to minimize the NVH quality impact in driver and passenger’s perception in HEVs. To integrate this important aspect in the early stages of the development and design phase, simulation technologies can be used to address the customer acceptance. By analyzing NVH measurements, the different noise components of the vehicle operation can be separated into ICE-related noise, EM-related noise and driving noise.
Technical Paper

Heavy Duty Diesel Engine and EAS Modelling and Validation for a Hardware-in-the-Loop Simulation System

2019-09-09
2019-24-0082
Faced with the need to reduce development time and cost in view of additional system complexity driven by ever more stringent emission regulations, the Hardware-in-the-Loop (HiL) simulation increasingly proves itself to be an advantageous tool not only in automotive companies but also in the off-road engine industry. The approach offers the possibility to analyze new engine control systems with fewer expensive engine dynamometer experiments and test drives. Thus, development cycles can be shortened and development costs reduced. This paper presents the development of an Internal Combustion Engine (ICE) and the correspondent Exhaust Aftertreatment System (EAS) model, its deployment on a HiL system and its application to pre-calibrate the engine for different vehicle cycles. A zero-dimensional mean value approach was chosen to guarantee adequate real-time factors for the coupling between the models and the Engine Control Unit (ECU).
Technical Paper

Hybrid Vehicle’s NVH Challenges and Influences on the NVH Development

2016-06-15
2016-01-1837
Due to more stringent emission regulation, especially plug-in hybrid vehicles have an increased attractiveness for OEMs to reduce OEM’s CO2 fleet emission. Generally, hybrid vehicles have a much higher complexity than conventional vehicles. This gives an additional degree of freedom for the development but also increases the number of potential NVH topics dramatically. Therefore, the role of frontloading and early prototype testing is getting even higher importance than in standard developments. Current hybrid vehicles on the market are mainly ICE vehicles with electric boosting or starting functionality only. This however will not be sufficient to fulfill the OEM’s CO2 fleet emission requirements. Future hybrid vehicles will have much higher electrical capabilities and drive much more in pure electric modes. Therefore, the more frequent change between the different driving modes and the related mode transitions will lead to a more complex interior NVH situation.
Journal Article

Integrated 1D/2D/3D Simulation of Fuel Injection and Nozzle Cavitation

2013-09-08
2013-24-0006
To promote advanced combustion strategies complying with stringent emission regulations of CI engines, computational models have to accurately predict the injector inner flow and cavitation development in the nozzle. This paper describes a coupled 1D/2D/3D modeling technique for the simulation of fuel flow and nozzle cavitation in diesel injection systems. The new technique comprises 1D fuel flow, 2D multi-body dynamics and 3D modeling of nozzle inner flow using a multi-fluid method. The 1D/2D model of the common rail injector is created with AVL software Boost-Hydsim. The computational mesh including the nozzle sac with spray holes is generated with AVL meshing tool Fame. 3D multi-phase calculations are performed with AVL software FIRE. The co-simulation procedure is controlled by Boost-Hydsim. Initially Hydsim performs a standalone 1D simulation until the needle lift reaches a prescribed tolerance (typically 2 to 5 μm).
Journal Article

Measures to Reduce Particulate Emissions from Gasoline DI engines

2011-04-12
2011-01-1219
Particulate emission reduction has long been a challenge for diesel engines as the diesel diffusion combustion process can generate high levels of soot which is one of the main constituents of particulate matter. Gasoline engines use a pre-mixed combustion process which produces negligible levels of soot, so particulate emissions have not been an issue for gasoline engines, particularly with modern port fuel injected (PFI) engines which provide excellent mixture quality. Future European and US emissions standards will include more stringent particulate limits for gasoline engines to protect against increases in airborne particulate levels due to the more widespread use of gasoline direct injection (GDI). While GDI engines are typically more efficient than PFI engines, they emit higher particulate levels, but still meet the current particulate standards.
X