Refine Your Search

Topic

Search Results

Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Technical Paper

360° vs. 270° vs. 180°: The Difference of Balancing a 2 Cylinder Inline Engine: Design, Simulation, Comparative Measurements

2012-10-23
2012-32-0106
Beside the automotive industry, where 2-cylinder inline engines are catching attention again, twin-cylinder configurations are quite usual in the small engine world. From stationary engines and range-extender use to small motorcycles up to big cruisers and K-Cars this engine architecture is used in many types of applications. Because of very good overall packaging, performance characteristics and not least the possibility of parts-commonality with 4-cylinder engines nearly every motorcycle manufacturer provides an inline twin in its model range. Especially for motorcycle applications where generally the engine is a rigid member of the frame and vibrations can be transferred directly to the rider an appropriate balancing system is required.
Journal Article

A Computational Approach to Assess Buffeting and Broadband Noise Generated by a Vehicle Sunroof

2015-04-14
2015-01-1532
Car manufacturers put large efforts into reducing wind noise to improve the comfort level of their cars. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof designs are tested to meet low-frequency buffeting (also known as boom) targets and broadband noise targets for the fully open sunroof with deflector and for the sunroof in vent position. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process.
Journal Article

A Computational Approach to Evaluate the Automotive Windscreen Wiper Placement Options Early in the Design Process

2013-05-13
2013-01-1933
For most car manufacturers, wind noise from the greenhouse region has become the dominant high frequency noise contributor at highway speeds. Addressing this wind noise issue using experimental procedures involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process. Previously, a computational approach that couples an unsteady computational fluid dynamics solver (based on a Lattice Boltzmann method) to a Statistical Energy Analysis (SEA) solver had been validated for predicting the noise contribution from the side mirrors. This paper presents the use of this computational approach to predict the vehicle interior noise from the windshield wipers, so that different wiper placement options can be evaluated early in the design process before the surface is frozen.
Journal Article

A Fully Coupled, 6 Degree-of-Freedom, Aerodynamic and Vehicle Handling Crosswind Simulation using the DrivAer Model

2016-04-05
2016-01-1601
In a real-world environment, a vehicle on the road is subjected to a range of flow yaw angles, the most severe of which can impact handling and stability. A fully coupled, six degrees-of-freedom CFD and vehicle handling simulation has modelled the complete closed loop system. Varying flow yaw angles are introduced via time dependent boundary conditions and aerodynamic loads predicted, whilst a handling model running simultaneously calculates the resulting vehicle response. Updates to the vehicle position and orientation within the CFD simulation are achieved using the overset grid method. Using this approach, a crosswind simulation that follows the parameters of ISO 12021:2010 (Sensitivity to lateral wind - Open-loop test method using wind generator input), was performed using the fastback variant of the DrivAer model. Fully coupled aerodynamic and vehicle response was compared to that obtained using the simplified quasi-steady and unsteady, one way coupled method.
Journal Article

A Parametric Study of Automotive Rear End Geometries on Rear Soiling

2017-03-28
2017-01-1511
The motivation for this paper is to consider the effect of rear end geometry on rear soiling using a representative generic SUV body. In particular the effect of varying the top slant angle is considered using both experiment and Computational Fluid Dynamics (CFD). Previous work has shown that slant angle has a significant effect on wake shape and drag and the work here extends this to investigate the effect on rear soiling. It is hoped that this work can provide an insight into the likely effect of such geometry changes on the soiling of similarly shaped road vehicles. To increase the generality of results, and to allow comparison with previously obtained aerodynamic data, a 25% scale generic SUV model is used in the Loughborough University Large Wind Tunnel. UV doped water is sprayed from a position located at the bottom of the left rear tyre to simulate the creation of spray from this tyre.
Technical Paper

A Pragmatic Model-Based Product Engineering Process

2014-04-01
2014-01-0308
Complexity of electronics and embedded software systems in automobiles has been increasing over the years. This necessitates the need for an effective and exhaustive development and validation process in order to deliver fault free vehicles at reduced time to market. Model-based Product Engineering (MBPE) is a new process for development and validation of embedded control software. The process is generic and defines the engineering activities to plan and assess the progress and quality of the software developed for automotive applications. The MBPE process is comprised of six levels (one design level and five verification and validation levels) ranging from the vehicle requirements phase to the start of production. The process describes the work products to be delivered during the course of product development and also aligns the delivery plan to overall vehicle development milestones.
Technical Paper

A Software Tool for Noise Quality and Brand Sound Development

2001-04-30
2001-01-1573
For noise quality and brand sound design of passenger cars a unique software tool is currently used by our clients world-wide to evaluate and optimise the interior noise quality and brand sound aspects of passenger cars on an objective basis. The software tools AVL-VOICE and AVL-COMFORT are designed for the objective analysis of interior noise quality, for benchmarking, for the definition of noise quality targets and most important for effective vehicle sound engineering. With this tool, the target orientated implementation of the required interior noise quality or brand sound by predictable hardware modifications into passenger cars - for tailor made joy of driving - becomes feasible. The use of this tools is drastically reducing vehicle evaluation time and sound engineering effort when compared with traditional jury subjective evaluation methods and standard acoustic NVH optimisation procedures.
Technical Paper

A Versatile Approach for an ISO26262 Compliant Hardware-Software Interface Definition with Model-Based Development

2015-04-14
2015-01-0148
Increasing demands for safety, security, and certifiability of embedded automotive systems require additional development effort to generate the required evidences that the developed system can be trusted for the application and environment it is intended for. Safety standards such as ISO 26262 for road vehicles have been established to provide guidance during the development of safety-critical systems. The challenge in this context is to provide evidence of consistency, correctness, and completeness of system specifications over different work-products. One of these required work-products is the hardware-software interface (HSI) definition. This work-product is especially important since it defines the interfaces between different technologies. Model-based development (MBD) is a promising approach to support the description of the system under development in a more structured way, thus improving resulting consistency.
Technical Paper

Achieving Compliance to RDE - How Does This Development Target Impact the Development Process, Testing Methodologies and Tools

2019-01-09
2019-26-0358
At first glance RDE seems to be a road testing topic only, mistakenly. While Type approval test must be performed at the Road and Chassis Dyno, development work beforehand delivers solutions fulfilling the demanded legislation limits. Making the right development steps and decisions will lead to a technical solution within economy of scales. Much of this work done happens on engine testbeds and Real Driving Emissions (RDE) per UN-ECE legislation or the new test cycle for the chassis dyno according WLTP (Worldwide Harmonized Light-Duty Test Procedure) will not change that. The question is, are engine test beds fit for this new challenge or are changes required? One characteristic element of RDE is the randomness of operating conditions generated by a road drive. There must be found a way, to achieve RDE relevant test conditions in a most reproducible manner.
Technical Paper

Active Grille Shutters Control and Benefits in Medium to Large SUV: A System Engineering Approach

2020-04-14
2020-01-0945
Whilst the primary function of the active grille shutters is to reduce the aerodynamic drag of the car, there are some secondary benefits like improving the warm up time of engine and also retaining engine heat when parked. In turbocharged IC engines the air is compressed (heated) in the turbo and then cooled by a low temperature cooling system before going into the engine. When the air intake temperature exceeds a threshold value, the engine efficiency falls - this drives the need for the cooling airflow across the radiator in normal operation. Airflow is also required to manage the convective heat transfer across various components in the engine bay for its lifetime thermal durability. Grill shutters can also influence the aerodynamic lift balance thus impacting the vehicle dynamics at high speed. The vehicle HVAC system also relies on the condenser in the front heat exchanger pack disposing the waste heat off in the most efficient way.
Technical Paper

Adding Depth: Establishing 3D Display Fundamentals for Automotive Applications

2015-04-14
2015-01-0147
The advent of 3D displays offers Human-Machine Interface (HMI) designers and engineers new opportunities to shape the user's experience of information within the vehicle. However, the application of 3D displays to the in-vehicle environment introduces a number of new parameters that must be carefully considered in order to optimise the user experience. In addition, there is potential for 3D displays to increase driver inattention, either through diverting the driver's attention away from the road or by increasing the time taken to assimilate information. Manufacturers must therefore take great care in establishing the ‘do’s and ‘don’t's of 3D interface design for the automotive context, providing a sound basis upon which HMI designers can innovate. This paper describes the approach and findings of a three-part investigation into the use of 3D displays in the instrument cluster of a road car, the overall aim of which was to define the boundaries of the 3D HMI design space.
Technical Paper

An Initial Study to Develop Appropriate Warning Sound for a Luxury Vehicle Using an Exterior Sound Simulator

2011-05-17
2011-01-1727
Many electric (EV) and hybrid-electric (HEV) vehicles are designed to operate using only electric propulsion at low road speeds. This has resulted in significantly reduced vehicle noise levels in urban situations. Although this may be viewed by many as a benefit, a risk to safety exists for those who rely on the engine noise to help detect the presence, location and behaviour of a vehicle in their vicinity. In recognition of this, legislation is being introduced globally which will require automotive manufacturers to implement external warning sound systems. A key challenge for premium vehicle manufacturers is the development of a suitable warning sound signature which also conveys the appropriate brand aspirations for the product. A further major difficulty exists when trying to robustly evaluate potential exterior sounds by running large-scale trials in the real world.
Journal Article

Analytical and Developmental Techniques Utilized in the Structural Optimization of a New Lightweight Diesel Engine

2015-06-15
2015-01-2298
Jaguar Land Rover (JLR) has designed and developed a new inline 4 cylinder engine family, branded Ingenium. In addition to delivering improved emissions and fuel economy over the outgoing engine, another key aim from the outset of the program was to reduce the combustion noise. This paper details the NVH development of the lead engine in this family, a 2.0 liter common rail turbo diesel. The task from the outset of this new program was to reduce the mass of the engine by 21.5 kg, whilst also improving the structural attenuation of the engine by 5 dB in comparison to the outgoing engine. Improving the structural attenuation by 5 dB was not only a key enabler in reducing combustion noise, but also helped to achieve a certified CO2 performance of 99 g/km in the all-new Jaguar XE model, by allowing more scope for increasing cylinder pressure forcing without compromising NVH.
Journal Article

Application of CFD to Predict Brake Disc Contamination in Wet Conditions

2016-04-05
2016-01-1619
Brake disc materials are being utilised that have low noise/dust properties, but are sensitive to contamination by surface water. This drives large dust shields, making brake cooling increasingly difficult. However, brake cooling must be delivered without compromising aerodynamic drag and hence CO2 emissions targets. Given that front brake discs sit in a region of geometric, packaging and flow complexity optimization of their performance requires the analysis of thermal, aerodynamic and multi-phase flows. Some of the difficulties inherent in this task would be alleviated if the complete analysis could be performed in the same CAE environment: utilizing common models and the same solver technology. Hence the project described in this paper has sought to develop a CFD method that predicts the amount of contamination (water) that reaches the front brake discs, using a standard commercial code already exploited for both brake disc thermal and aerodynamics analysis.
Journal Article

Assessing the Aeroacoustic Response of a Vehicle to Transient Flow Conditions from the Perspective of a Vehicle Occupant

2014-04-01
2014-01-0591
On-road, a vehicle experiences unsteady flow conditions due to turbulence in the natural wind, moving through the unsteady wakes of other road vehicles and travelling through the stationary wakes generated by roadside obstacles. Separated flow structures in the sideglass region of a vehicle are particularly sensitive to unsteadiness in the onset flow. These regions are also areas where strong aeroacoustic effects can exist, in a region close to the passengers of a vehicle. The resulting aeroacoustic response to unsteadiness can lead to fluctuations and modulation at frequencies that a passenger is particularly sensitive towards. Results presented by this paper combine on-road measurement campaigns using instrumented vehicles in a range of different wind environments and aeroacoustic wind tunnel tests.
Journal Article

Assessment of Broadband Noise Generated by a Vehicle Sunroof at Different Flow Conditions using a Digital Wind Tunnel

2015-06-15
2015-01-2321
For the automotive industry, the quality and level of the wind noise contribution has a growing importance and therefore should be addressed as early as possible in the development process. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof broadband noise is generated by the turbulent flow developed over the roof opening. A strong shear layer and vortices impacting on the trailing edge of the sunroof are typical mechanisms related to the noise production. Sunroof designs are tested to meet broadband noise targets. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions and potentially late design changes.
Technical Paper

Assessment of a Vehicle's Transient Aerodynamic Response

2012-04-16
2012-01-0449
A vehicle on the road encounters an unsteady flow due to turbulence in the natural wind, due to the unsteady wakes of other vehicles and as a result of traversing through the stationary wakes of roadside obstacles. There is increasing concern about potential differences between the steady flow conditions used for development and the transient conditions that occur on the road. This paper seeks to determine if measurements made under steady state conditions can be used to predict the aerodynamic behaviour of a vehicle on road in a gusty environment. The project has included measurements in two full size wind tunnels, including using the Pininfarina TGS, steady-state and transient inlet simulations in Exa Powerflow, and a campaign of testing on-road and on-track. The particular focus of this paper is on steady wind tunnel measurements and on-road tests, representing the most established development environment and the environment experienced by the customer, respectively.
Technical Paper

Automated Test Case Generation and Virtual Assessment Framework for UN Regulation on Automated Lane Keeping Systems

2021-04-06
2021-01-0870
Validation of highly automated or autonomous vehicles is nowadays still a major challenge for the automotive industry. Furthermore, the homologation of ADAS/AD vehicles according to global regulations is getting more essential for their safe development and deployment around the world. In order to assure that the autonomous driving function is able to cope with the huge number of possible situations during operation, comprehensive testing of the functions is required. However, conventional testing approaches such as driving distance-based validation approach in the real world, can be time- and cost-consuming. Therefore, a scenario-based virtual validation and testing method is considered to be a proper solution. In this paper, we propose a virtual assessment framework using a fully automated test case generation method. This framework is embedded into the continuous development and validation process.
Journal Article

Base Pressure and Flow-Field Measurements on a Generic SUV Model

2015-04-14
2015-01-1546
The pressure on the base of a vehicle is a major contributor to the aerodynamic drag of all practical vehicle geometries, and for some vehicles, such as an SUV, it is particularly important because it can account for up to 50% of the overall drag. Understanding the mechanisms that influence the base pressure and developing our simulation tools to ensure that base pressure is accurately predicted are essential requirements for the vehicle design and engineering process. This paper reports an experimental study to investigate the base pressure on a specifically designed generic SUV model. The results from ¼ scale wind tunnel tests include force and moment data, surface pressures over the base region and particle image velocimetry (PIV) in the wake. Results are presented for the vehicle in different ride height, underfloor roughness and wheel configurations and the paper includes some description of the experimental errors. Some initial CFD simulations are also reported.
X