Refine Your Search

Topic

Author

Search Results

Technical Paper

360° vs. 270° vs. 180°: The Difference of Balancing a 2 Cylinder Inline Engine: Design, Simulation, Comparative Measurements

2012-10-23
2012-32-0106
Beside the automotive industry, where 2-cylinder inline engines are catching attention again, twin-cylinder configurations are quite usual in the small engine world. From stationary engines and range-extender use to small motorcycles up to big cruisers and K-Cars this engine architecture is used in many types of applications. Because of very good overall packaging, performance characteristics and not least the possibility of parts-commonality with 4-cylinder engines nearly every motorcycle manufacturer provides an inline twin in its model range. Especially for motorcycle applications where generally the engine is a rigid member of the frame and vibrations can be transferred directly to the rider an appropriate balancing system is required.
Journal Article

A Computational Approach to Assess Buffeting and Broadband Noise Generated by a Vehicle Sunroof

2015-04-14
2015-01-1532
Car manufacturers put large efforts into reducing wind noise to improve the comfort level of their cars. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof designs are tested to meet low-frequency buffeting (also known as boom) targets and broadband noise targets for the fully open sunroof with deflector and for the sunroof in vent position. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process.
Technical Paper

A Correlation Methodology between AVL Mean Value Engine Model and Measurements with Concept Analysis of Mean Value Representation for Engine Transient Tests

2017-09-04
2017-24-0053
The use of state of the art simulation tools for effective front-loading of the calibration process is essential to support the additional efforts required by the new Real Driving Emission (RDE) legislation. The process needs a critical model validation where the correlation in dynamic conditions is used as a preliminary insight into the bounds of the representation domain of engine mean values. This paper focuses on the methodologies for correlating dynamic simulations with emissions data measured during dynamic vehicle operation (fundamental engine parameters and gaseous emissions) obtained using dedicated instrumentation on a diesel vehicle, with a particular attention for oxides of nitrogen NOx specie. This correlation is performed using simulated tests run within AVL’s mean value engine and engine aftertreatment (EAS) model MoBEO (Model Based Engine Optimization).
Technical Paper

A Pragmatic Model-Based Product Engineering Process

2014-04-01
2014-01-0308
Complexity of electronics and embedded software systems in automobiles has been increasing over the years. This necessitates the need for an effective and exhaustive development and validation process in order to deliver fault free vehicles at reduced time to market. Model-based Product Engineering (MBPE) is a new process for development and validation of embedded control software. The process is generic and defines the engineering activities to plan and assess the progress and quality of the software developed for automotive applications. The MBPE process is comprised of six levels (one design level and five verification and validation levels) ranging from the vehicle requirements phase to the start of production. The process describes the work products to be delivered during the course of product development and also aligns the delivery plan to overall vehicle development milestones.
Technical Paper

A Versatile Approach for an ISO26262 Compliant Hardware-Software Interface Definition with Model-Based Development

2015-04-14
2015-01-0148
Increasing demands for safety, security, and certifiability of embedded automotive systems require additional development effort to generate the required evidences that the developed system can be trusted for the application and environment it is intended for. Safety standards such as ISO 26262 for road vehicles have been established to provide guidance during the development of safety-critical systems. The challenge in this context is to provide evidence of consistency, correctness, and completeness of system specifications over different work-products. One of these required work-products is the hardware-software interface (HSI) definition. This work-product is especially important since it defines the interfaces between different technologies. Model-based development (MBD) is a promising approach to support the description of the system under development in a more structured way, thus improving resulting consistency.
Journal Article

Accelerated Fatigue and Modal Parameter Identification of Lightweight Structures

2014-06-30
2014-01-2095
Car components are exposed to the random/harmonic/impact excitation which can result in component failure due to vibration fatigue. The stress and strain loads do depend on local stress concentration effects and also on the global structural dynamics properties. Standardized fatigue testing is long-lasting, while the dynamic fatigue testing can be much faster; however, the dynamical changes due to fatigue are usually not taken into account and therefore the identified fatigue and structural parameters can be biased. In detail: damage accumulation results in structural changes (stiffness, damping) which are hard to measure in real time; further, structural changes change the dynamics of the loaded system and without taking this changes into account the fatigue load in the stress concentration zone can change significantly (even if the excitation remains the same). This research presents a new approach for accelerated vibration testing of real structures.
Technical Paper

Accurate Model Based Hardware-in-the-Loop Test for a Windscreen Wiper System

2012-04-16
2012-01-1164
Hardware-in-the-loop (HIL) simulations have long been used to test electronic control units (ECUs) and software in car manufacturers. It provides an effective platform to the rapid development process of the ECU control algorithms and accommodates the added complexity of the plant under control. Accurate Model based HIL simulation (AMHIL) is considered as a most efficient and cost effective way for exploration of new designs and development of new products, particularly in calibration and parameterization of vehicle stability controllers. The work presented in the paper is to develop a mathematical model of a windscreen wiper system for the purpose of conducting HIL vehicle test and eventually to replace the real component with the model for cost cutting and improved test efficiency. The model is developed based on the electro-mechanical engineering principles.
Technical Paper

Achieving Compliance to RDE - How Does This Development Target Impact the Development Process, Testing Methodologies and Tools

2019-01-09
2019-26-0358
At first glance RDE seems to be a road testing topic only, mistakenly. While Type approval test must be performed at the Road and Chassis Dyno, development work beforehand delivers solutions fulfilling the demanded legislation limits. Making the right development steps and decisions will lead to a technical solution within economy of scales. Much of this work done happens on engine testbeds and Real Driving Emissions (RDE) per UN-ECE legislation or the new test cycle for the chassis dyno according WLTP (Worldwide Harmonized Light-Duty Test Procedure) will not change that. The question is, are engine test beds fit for this new challenge or are changes required? One characteristic element of RDE is the randomness of operating conditions generated by a road drive. There must be found a way, to achieve RDE relevant test conditions in a most reproducible manner.
Technical Paper

Adding Depth: Establishing 3D Display Fundamentals for Automotive Applications

2015-04-14
2015-01-0147
The advent of 3D displays offers Human-Machine Interface (HMI) designers and engineers new opportunities to shape the user's experience of information within the vehicle. However, the application of 3D displays to the in-vehicle environment introduces a number of new parameters that must be carefully considered in order to optimise the user experience. In addition, there is potential for 3D displays to increase driver inattention, either through diverting the driver's attention away from the road or by increasing the time taken to assimilate information. Manufacturers must therefore take great care in establishing the ‘do’s and ‘don’t's of 3D interface design for the automotive context, providing a sound basis upon which HMI designers can innovate. This paper describes the approach and findings of a three-part investigation into the use of 3D displays in the instrument cluster of a road car, the overall aim of which was to define the boundaries of the 3D HMI design space.
Technical Paper

Additive Manufacturing in Powertrain Development – From Prototyping to Dedicated Production Design

2024-04-09
2024-01-2578
Upcoming, increasingly stringent greenhouse gas (GHG) as well as emission limits demand for powertrain electrification throughout all vehicle applications. Increasing complexity of electrified powertrain architectures require an overall system approach combining modular component technology with integration and industrialization requirements when heading for further significant efficiency optimization. At the same time focus on reduced development time, product cost and minimized additional investment demand reuse of current production, machining, and assembly facilities as far as possible. Up to date additive manufacturing (AM) is an established prototype component, as well as tooling technology in the powertrain development process, accelerating procurement time and cost, as well as allowing to validate a significantly increased number of variants. The production applications of optimized, dedicated AM-based component design however are still limited.
Journal Article

Advances in Experimental Vehicle Soiling Tests

2020-04-14
2020-01-0681
The field of vision of the driver during wet road conditions is essential for safety at all times. Additionally, the safe use of the increasing number of sensors integrated in modern cars for autonomous driving and intelligent driver assistant systems has to be ensured even under challenging weather conditions. To fulfil these requirements during the development process of new cars, experimental and numerical investigations of vehicle soiling are performed. This paper presents the surface contamination of self- and foreign-soiling tested in the wind tunnel. For these type of tests, the fluorescence method is state-of-the-art and widely used for visualizing critical areas. In the last years, the importance of parameters like the contact angle have been identified when designing the experimental setup. In addition, new visualization techniques have been introduced.
Technical Paper

An Initial Study to Develop Appropriate Warning Sound for a Luxury Vehicle Using an Exterior Sound Simulator

2011-05-17
2011-01-1727
Many electric (EV) and hybrid-electric (HEV) vehicles are designed to operate using only electric propulsion at low road speeds. This has resulted in significantly reduced vehicle noise levels in urban situations. Although this may be viewed by many as a benefit, a risk to safety exists for those who rely on the engine noise to help detect the presence, location and behaviour of a vehicle in their vicinity. In recognition of this, legislation is being introduced globally which will require automotive manufacturers to implement external warning sound systems. A key challenge for premium vehicle manufacturers is the development of a suitable warning sound signature which also conveys the appropriate brand aspirations for the product. A further major difficulty exists when trying to robustly evaluate potential exterior sounds by running large-scale trials in the real world.
Technical Paper

Analytical Target Cascading Framework for Diesel Engine Calibration Optimisation

2014-10-13
2014-01-2583
This paper presents the development and implementation of an Analytical Target Cascading (ATC) Multi-disciplinary Design Optimisation (MDO) framework for the steady state engine calibration optimisation problem. The case is made that the ATC offers a convenient framework for the engine calibration optimisation problem based on steady state engine test data collected at specified engine speed / load points, which is naturally structured on 2 hierarchical levels: the ‘Global’ level, associated with performance over a drive cycle, and ‘Local’ level, relating to engine operation at each speed / load point. The case study of a diesel engine was considered to study the application of the ATC framework to a calibration optimisation problem. The paper describes the analysis and mathematical formulation of the diesel engine calibration optimisation as an ATC framework, and its Matlab implementation with gradient based and evolutionary optimisation algorithms.
Technical Paper

Assessment of a Vehicle's Transient Aerodynamic Response

2012-04-16
2012-01-0449
A vehicle on the road encounters an unsteady flow due to turbulence in the natural wind, due to the unsteady wakes of other vehicles and as a result of traversing through the stationary wakes of roadside obstacles. There is increasing concern about potential differences between the steady flow conditions used for development and the transient conditions that occur on the road. This paper seeks to determine if measurements made under steady state conditions can be used to predict the aerodynamic behaviour of a vehicle on road in a gusty environment. The project has included measurements in two full size wind tunnels, including using the Pininfarina TGS, steady-state and transient inlet simulations in Exa Powerflow, and a campaign of testing on-road and on-track. The particular focus of this paper is on steady wind tunnel measurements and on-road tests, representing the most established development environment and the environment experienced by the customer, respectively.
Technical Paper

Automated Calibration for Transmission on Powertrain Dynamometers

2015-04-14
2015-01-1625
Today, OEMs are challenged with an increasing number of powertrain variants and complexity of controls software. They are facing internal pressure to provide mature and refined calibrations earlier in the development process. Until now, it was difficult to respond to these requests as the drivability's calibration tasks are mostly done in vehicles. This paper describes a new methodology designed to answer these challenges by performing automated shift quality calibration prior to the availability of vehicles. This procedure is using a powertrain dynamometer coupled with a real-time vehicle dynamics model. By using a Power Train Test Bed (PTTB), a physical vehicle is not required. As soon as the vehicle dynamics model and its parameters have been defined, it can be simulated on the PTTB and drivability calibrations can be developed. A complete powertrain is coupled with low inertia and highly dynamic dynamometers.
Technical Paper

Automated EMS Calibration using Objective Driveability Assessment and Computer Aided Optimization Methods

2002-03-04
2002-01-0849
Future demands regarding emissions, fuel consumption and driveability lead to complex engine and power train control systems. The calibration of the increasing number of free parameters in the ECU's contradicts the demand for reduced time in the power train development cycle. This paper will focus on the automatic, unmanned closed loop optimization of driveability quality on a high dynamic engine test bed. The collaboration of three advanced methods will be presented: Objective real time driveability assessment, to predict the expected feelings of the buyers of the car Automatic computer assisted variation of ECU parameters on the basis of statistical methods like design of experiments (DoE). Thus data are measured in an automated process allowing an optimization based on models (e.g. neural networks).
Technical Paper

Automatic ECU-Calibration - An Alternative to Conventional Methods

1993-03-01
930395
Due to increasing complexity of engine electronic systems, there is a demand to handle the often more than 10,000 calibration data automatically. Establishing optimized start of injection and EGR tables of a TC DI Diesel engine by conventional methods takes about two weeks of intensive calibration work. By automatic map calibration, this task can be handled in less than 20 hours automatically, with no staff required during optimization. The benefits of automatic calibration therefore are reduced costs and faster response to any changes in parameters, even with complex multidimensional engine calibration problems. The paper describes the optimization method as well as the experimental work on the test stand that produces the results.
Technical Paper

Calibrating BEV and HEV Powertrains for Dynamic Performance Targets

2021-09-05
2021-24-0100
Calibrating a vehicle’s powertrain for dynamic operation needs to focus on efforts to mitigate the risks of thermal overload which may arise in the stator or rotor components of an e-motor. Risks also may arise for expected NVH or durability targets, with torque and torque “oscillations” acting as primary sources for the vehicles’ NVH behavior. Both topics, temperature measurement of stator and rotor as well as dynamic torque measurements of the powertrain’s drive shaft are addressed with examples demonstrating the sensors applications in normal test bed and vehicle configurations.
Technical Paper

Challenges and Opportunities in Variant Calibration of Hybrid Vehicles

2014-10-13
2014-01-2889
The automotive industry is racing to introduce some degree of hybridization into their product ranges. Since the term “hybrid vehicle” can cover a wide range of differing technologies and drivetrain topologies, this has led to a large amount of vehicles that call themselves “hybrid”. This poses an interesting challenge for marketers to differentiate these vehicles from the incumbents. However, it is not just the marketers who are faced with challenges, the developers of such hybrid drivetrains are faced with a rise in technical complexity due to the wide range of operating modes hybridization introduces. As propulsive torque is being generated in more than one place in a hybrid vehicle, the transitions from conventional drive to electrically supported drive bring with them complex aspects of multi-dimensional system control. The challenge is to be able to implement hybrid technology in an existing drivetrain, while adapting the existing components as required.
Technical Paper

Challenges and Opportunities of Variant Calibration of Hybrid Vehicles

2013-03-25
2013-01-0128
The automotive industry is racing to introduce some degree of hybridization into their product ranges. Since the term "hybrid vehicle" can cover a wide range of differing technologies and drivetrain topologies, this has led to a plethora of vehicles that call them "hybrid." This poses an interesting challenge for marketers to differentiate these vehicles from the incumbents. However, it is not just the marketers who are faced with challenges, the developers of such hybrid drivetrains are faced with a rise in technical complexity due to the wide range of operating modes hybridization introduces. As propulsive torque is being generated in more than one place in a hybrid vehicle, the transitions from conventional drive to electrically supported drive bring with them complex aspects of multi-dimensional system control. The challenge is to be able to implement hybrid technology in an existing drivetrain, while adapting the existing components as required.
X