Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Maneuver-Based Threat Assessment Strategy for Collision Avoidance

Advanced driver assistance systems (ADAS) are being developed for more and more complicated application scenarios, which often require more predictive strategies with better understanding of driving environment. Taking traffic vehicles’ maneuvers into account can greatly expand the beforehand time span for danger awareness. This paper presents a maneuver-based strategy to vehicle collision threat assessment. First, a maneuver-based trajectory prediction model (MTPM) is built, in which near-future trajectories of ego vehicle and traffic vehicles are estimated with the combination of vehicle’s maneuvers and kinematic models that correspond to every maneuver. The most probable maneuvers of ego vehicle and each traffic vehicles are modeled and inferred via Hidden Markov Models with mixture of Gaussians outputs (GMHMM). Based on the inferred maneuvers, trajectory sets consisting of vehicles’ position and motion states are predicted by kinematic models.
Technical Paper

Intention-aware Lane Changing Assistance Strategy Basing on Traffic Situation Assessment

Traffic accidents avoidance is one of the main advantages for automated vehicles. As one of the main causes of vehicle collision accidents, lane changing of the ego vehicle in case that the obstacle vehicles appear in the blind spot with uncertain motion intentions is one of the main goals for the automated vehicle. An intention-aware lane changing collision assistance strategy basing on traffic situation assessment in the complex traffic scenarios is proposed in this paper. Typical Regions of Interest (ROI) within the detection range of the blind spots are selected basing on the road topology structures and state space consisting of the ego vehicle and the obstacle vehicles. Then the motion intentions of the obstacle vehicles in ROI are identified basing on Gaussian Mixture Models (GMM) and the corresponding motion trajectories are predicted basing on the state equation.
Technical Paper

Personalized Eco-Driving for Intelligent Electric Vehicles

Minimum energy consumption with maximum comfort driving experience define the ideal human mobility. Recent technological advances in most Advanced Driver Assistance Systems (ADAS) on electric vehicles not only present a significant opportunity for automated eco-driving but also enhance the safety and comfort level. Understanding driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system comfort. This research focuses on the personalized and green adaptive cruise control for intelligent electric vehicle, which is also known to be MyEco-ACC. MyEco-ACC is based on the optimization of regenerative braking and typical driving styles. Firstly, a driving style model is abstracted as a Hammerstein model and its key parameters vary with different driving styles. Secondly, the regenerative braking system characteristics for the electric vehicle equipped with 4-wheel hub motors are analyzed and braking force distribution strategy is designed.
Technical Paper

Research on the Classification and Identification for Personalized Driving Styles

Most of the Advanced Driver Assistance System (ADAS) applications are aiming at improving both driving safety and comfort. Understanding human drivers' driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system performance, in particular, the acceptance and adaption of ADAS to human drivers. The research presented in this paper focuses on the classification and identification for personalized driving styles. To motivate and reflect the information of different driving styles at the most extent, two sets, which consist of six kinds of stimuli with stochastic disturbance for the leading vehicles are created on a real-time Driver-In-the-Loop Intelligent Simulation Platform (DILISP) with PanoSim-RT®, dSPACE® and DEWETRON® and field test with both RT3000 family and RT-Range respectively.