Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Analysis of Vehicle Steering Stability of Nonlinear Four Wheel Steering Based on Sliding Mode Control

2018-08-07
2018-01-1593
Steering movement is the most basic movement of the vehicle, in the car driving process, the driver through the steering wheel has always been to control the direction of the car, in order to achieve their own driving intention. Four Wheel Steering (4WS) is an advanced vehicle control technique which can markedly improve vehicle steering characteristics. Compared with traditional front wheel steering vehicles, 4WS vehicles can steer the front wheels and the rear wheels individually for cornering, according to the vehicle motion states such as the information of vehicle speed, yaw velocity and lateral acceleration. Therefore, 4WS can enhance the handling stability and improve the active safety for vehicles.
Technical Paper

Enhancing Lateral Stability in Adaptive Cruise Control: A Takagi-Sugeno Fuzzy Model-Based Strategy

2024-04-09
2024-01-1962
Adaptive cruise control is one of the key technologies in advanced driver assistance systems. However, improving the performance of autonomous driving systems requires addressing various challenges, such as maintaining the dynamic stability of the vehicle during the cruise process, accurately controlling the distance between the ego vehicle and the preceding vehicle, resisting the effects of nonlinear changes in longitudinal speed on system performance. To overcome these challenges, an adaptive cruise control strategy based on the Takagi-Sugeno fuzzy model with a focus on ensuring vehicle lateral stability is proposed. Firstly, a collaborative control model of adaptive cruise and lateral stability is established with desired acceleration and additional yaw moment as control inputs. Then, considering the effect of the nonlinear change of the longitudinal speed on the performance of the vehicle system.
Technical Paper

Functional Safety Concept Design of Vehicle Steer-by-Wire System

2024-04-09
2024-01-2792
Steer-By-Wire (SBW) system directly transmits the driver's steering input to the wheels through electrical signals. However, the reliability of electronic equipment is significantly lower than that of mechanical structures, and the risk of failure increases, so it is important to conduct functional safety studies on SBW systems. This paper develops the functional safety of the SBW system according to the requirements of the international standard ISO26262, and first defines the relevant items and application scope of SBW system. Secondly, the Hazard and Operability (HAZOP) method was used to combine scenarios and possible dangerous events to carry out Hazard Analysis and Risk Assessment (HARA), and the Automotive Safety Integrity Level (ASIL) was obtained according to the three evaluation indicators of Exposure, Severity and Controlabillity, and then the corresponding safety objectives were established and Fault Tolerant Time Interval (FTTI) was set.
Technical Paper

Research on the Dynamic Integration Control for Distributed-Traction Electric Vehicle with Four-Wheel-Distributed Steering System

2018-04-03
2018-01-0814
With rapid development of the automobile industry and the growing maturity of the automotive electronic technologies, the distributed-traction electric vehicle with four-wheel-distributed steering/braking/traction systems is regarded as an important development direction. With its unique chassis structure, it is the ideal benchmark platform used to evaluate active safety systems. The distributed-traction electric vehicle with four-wheel-distributed steering system is essentially full drive-by-wire vehicle. With its flexible chassis layout and high control degrees-of-freedom, the full drive-by-wire electric vehicle acted as a kind of redundant system is an ideal platform for the research of integrated control. In this treatise, the longitudinal dynamics of the electric vehicle as well as its lateral and yaw motions are controlled simultaneously.
X