Refine Your Search

Topic

Search Results

Technical Paper

A Precise Clamping Force Control Strategy for Electro-Mechanical Braking System Based on Nonlinear Characteristics Compensation

2024-04-09
2024-01-2322
Electro-Mechanical Braking (EMB) system, which completely abandons the traditional hydraulic device, realizes complete human-vehicle decoupling and integrates various functions without adding additional accessories, could meet the requirements of the future intelligent driving technology for high-quality braking control. However, there are significant internal interference of nonlinear characteristics such as mechanical friction and system variable stiffness during the actual working process of EMB, and these make the accuracy and rate of the clamping force control decline. This paper proposes a precise clamping force control strategy for EMB based on nonlinear characteristics compensation. First, we systematically analyze the working principle of EMB, and establish the mathematical model of EMB system including motor, transmission mechanism and friction. At the same time, some typical experiments are designed to identify internal parameters of friction model.
Technical Paper

ABS Control Algorithm Based on Direct Slip Rate for Hybrid Brake System

2018-04-03
2018-01-0830
The brake-by-wire system (BBW) is better match the new energy vehicle in the future direction of development. The electro-mechanical brake (EMB) is lack of the brake failure backup and need a high 42 V voltage for the power supply. This paper presents a new brake-by-wire hybrid brake system (HBS) with the electro-hydraulic brake (EHB) equipped on the front wheels and the EMB equipped on the rear wheels. The combination of these two brake-by-wire systems has advantages of both the EHB and EMB system. The EMB on the rear wheels totally removing the rear pipes and can be simply mounted. In addition, since the need of brake torque on the rear axle is relatively small, the power supply of EMB can be reduced to 12 V. Meanwhile, the EHB on the front wheels has the failure backup function through the hydraulic line. The HBS can quickly and accurately regulate four wheels brake force of vehicles which can well meet the requirement of antilock brake system (ABS).
Journal Article

Accurate Pressure Control Based on Driver Braking Intention Identification for a Novel Integrated Braking System

2021-04-06
2021-01-0100
With the development of intelligent and electric vehicles, higher requirements are put forward for the active braking and regenerative braking ability of the braking system. The traditional braking system equipped with vacuum booster has difficulty meeting the demand, therefore it has gradually been replaced by the integrated braking system. In this paper, a novel Integrated Braking System (IBS) is presented, which mainly contains a pedal feel simulator, a permanent magnet synchronous motor (PMSM), a series of transmission mechanisms, and the hydraulic control unit. As an integrative system of mechanics-electronics-hydraulics, the IBS has complex nonlinear characteristics, which challenge the accurate pressure control. Furthermore, it is a completely decoupled braking system, the pedal force doesn’t participate in pressure-building, so it is necessary to precisely identify driver’s braking intention.
Technical Paper

Accurate Pressure Control Strategy of Electronic Stability Program Based on the Building Characteristics of High-Speed Switching Valve

2019-04-02
2019-01-1107
The Electronic Stability Program (ESP), as a key actuator of traditional automobile braking system, plays an important role in the development of intelligent vehicles by accurately controlling the pressure of wheels. However, the ESP is a highly nonlinear controlled object due to the changing of the working temperature, humidity, and hydraulic load. In this paper, an accurate pressure control strategy of single wheel during active braking of ESP is proposed, which doesn’t rely on the specific parameters of the hydraulic system and ESP. First, the structure and working principle of ESP have been introduced. Then, we discuss the possibility of Pulse Width Modulation (PWM) control based on the mathematical model of the high-speed switching valve. Subsequently, the pressure building characteristics of the inlet and outlet valves are analyzed by the hardware in the Loop (HiL) experimental platform.
Technical Paper

An Adaptive Clamping Force Control Strategy for Electro-Mechanical Brake System Considering Nonlinear Friction Resistance

2024-04-09
2024-01-2282
The Electronic Mechanical Braking (EMB) system, which offers advantages such as no liquid medium and complete decoupling, can meet the high-quality active braking and high-intensity regenerative braking demands proposed by intelligent vehicles and is considered one of the ideal platforms for future chassis. However, traditional control strategies with fixed clamping force tracking parameters struggle to maintain high-quality braking performance of EMB under variable braking requests, and the nonlinear friction between mechanical components also affects the accuracy of clamping force control. Therefore, this paper presents an adaptive clamping force control strategy for the EMB system, taking into account the resistance of nonlinear friction. First, an EMB model is established as the simulation and control object, which includes the motor model, transmission model, torque balance model, stiffness model, and friction model.
Journal Article

An Indirect TPMS Algorithm Based on Tire Resonance Frequency Estimated by AR Model

2016-04-05
2016-01-0459
Proper tire pressure is very important for multiple driving performance of a car, and it is necessary to monitor and warn the abnormal tire pressure online. Indirect Tire Pressure Monitoring System (TPMS) monitors the tire pressure based on the wheel speed signals of Anti-lock Braking System (ABS). In this paper, an indirect TPMS method is proposed to estimate the tire pressure according to its resonance frequency of circumferential vibration. Firstly, the errors of ABS wheel speed sensor system caused by the machining tolerance of the tooth ring are estimated based on the measured wheel speed using Recursive Least Squares (RLS) algorithm and the measuring errors are eliminated from the wheel speed signal. Then, the data segments with drive train torsional vibration are found out and eliminated by the methods of correlation analysis.
Technical Paper

Commercial Vehicle's Longitudinal Deceleration Precise Control Considering Vehicle-Actuator Dynamic Characteristics

2024-04-09
2024-01-2313
The installation of the Electronic Braking System (EBS) could effectively improve braking response speed, shorten braking distance, and ensure driving safety of commercial vehicles. However, during longitudinal deceleration control process, the commercial vehicles face not only challenges such as large inertia mass and random road gradient resistance of the vehicle layer, but also non-linear characteristics of the EBS actuator layer. In order to solve these problems, this paper proposes a commercial vehicle’s longitudinal deceleration precise control strategy considering vehicle-actuator dynamic characteristics. First, longitudinal dynamics of commercial vehicle is analyzed, and so is the EBS’ non-linear response hysteresis characteristics. Then, we design the dual layer deceleration control strategy. In vehicle layer, the recursive least squares with forgetting factor and Kalman filtering are comprehensively applied to dynamically estimate the vehicle mass and driving road slope.
Journal Article

Design and Position Control of a Novel Electric Brake Booster

2018-04-03
2018-01-0812
The electric vehicles and the intelligent vehicles put forward to new requirements for the brake system, such as the vacuum-independent braking, automatic or active braking, and regenerative braking, which are the key link for the vehicle’s safety and economy. However, the traditional vacuum brake booster is no longer able to meet these requirements. In this article, a novel integrated power-assisted actuator of brake system is proposed to satisfy the brake system requirements of the electric vehicles and intelligent vehicles. The electronic brake booster system is designed to achieve the function of boosting pedal force of driver, being independent on vacuum source, supplying autonomous or active braking. It is mainly composed of a permanent magnet synchronous motor (PMSM), a two-stage reduction transmission (gears and a ball screw), a servo body, and a reaction disk. The scheme design and power-assisted braking control are the key for the electronic actuator.
Journal Article

Design and Power-Assisted Braking Control of a Novel Electromechanical Brake Booster

2018-04-03
2018-01-0762
As a novel assist actuator of brake system, the electromechanical brake (EMB) booster has played a significant role in the battery electric vehicles and automatic driving vehicles. It has advantages of independent to vacuum source, active braking, and tuning pedal feeling compared with conventional vacuum brake booster. In this article, a novel EMB booster system is proposed, which is consisted of a permanent magnet synchronous motor (PMSM), a two-stage reduction by gears and ball screw, a servo body, and a reaction disk. Together with the hydraulic control unit, it has two working modes: active braking for automatic drive and passive braking for driver intervention. The structure and work principle of the electric brake booster system is first introduced. The precise control from pedal force to hydraulic pressure is the key for such a power-assisted brake actuator. We translate the control problem of force feedback control to position tracking control.
Technical Paper

Development and Verification of Control Algorithm for Permanent Magnet Synchronous Motor of the Electro-Mechanical Brake Booster

2019-04-02
2019-01-1105
To meet the new requirements of braking system for modern electrified and intelligent vehicles, various novel electro-mechanical brake boosters (Eboosters) are emerging. This paper is aimed at a new type of the Ebooster, which is mainly consisted of a permanent magnet synchronous motor (PMSM), a two-stage reduction transmission and a servo mechanism. Among them, the PMSM is a vital actuator to realize the functions of the Ebooster. To get fast response of the Ebooster system, a novel control strategy employing a maximum torque per ampere (MTPA) control with current compensation decoupling and current-adjusting adaptive flux-weakening control is proposed, which requires the PMSM can operate in a large speed range and maintain a certain anti-load interference capability. Firstly, the wide speed control strategy for the Ebooster’s PMSM is designed in MATLAB/Simulink.
Technical Paper

Model-Based Pneumatic Braking Force Control for the Emergency Braking System of Tractor-Semitrailer

2018-04-03
2018-01-0824
As bottom layer actuator for the AEB system, the active brake system and the brake force control of tractor-semitrailer have been the hot topics recently. In this paper, a set of active pneumatic brake system was designed based on the traditional brake system of tractor-semitrailer, which can realize the active brake of the vehicle under necessary conditions. Then, a precise mathematical model of the active pneumatic brake system was built by referring the flow characteristics of the solenoid valve, and some tests were implemented to verify the accuracy and validity of the active brake system model. Based on the model, an active pneumatic brake pressure control strategy combining the feedforward and feedback controlling modes was designed. By generating the PWM control signal, it can precisely control the desired wheel cylinder brake pressure of the active brake system. Finally, the brake pressure control strategy was validated both by simulation tests and bench tests.
Technical Paper

Modelling and Validation for an Electro-Hydraulic Braking System Equipped with the Electro-Mechanical Booster

2018-04-03
2018-01-0828
The intelligent and electric vehicles are the future of vehicle technique. The development of intelligent and electric vehicles also promotes new requirements to many traditional chassis subsystems, including traditional braking system equipped with vacuum boosters. The Electro-Mechanical Booster is an applicable substitute of traditional vacuum booster for future intelligent and electric vehicles. It is independent of engine vacuum source, and can be combined with electric regenerative braking. A complete system model is necessary for system analysis and algorithm developing. For this purpose, the modeling of electro-hydraulic braking system is necessary. In this paper, a detailed electro-hydraulic braking system model is studied. The system consists of an electro-mechanical booster and hydraulic braking system. The electro-mechanical booster which mainly contains a permanent magnet synchronous motor (PMSM) and a set of transmission mechanism is the critical component.
Technical Paper

Nonlinear Control of Vehicle Chassis Planar Stability Based on T-S Fuzzy Model

2016-04-05
2016-01-0471
In the past decades, the stability of vehicles has been improved significantly by use of variety of chassis control systems such as Antilock Braking System (ABS), Electric Stability Program (ESP) and Active Front Steering (AFS). Recently, in order to further improve the performance of vehicles, more and more researches are focused on the integration control of multiple degrees of freedom of vehicle dynamic. However, in order to control multiple degrees of freedom simultaneously, the nonlinear problems caused by the coupling between different degrees of freedom have to be solved, which is always a difficult task. In this paper, a three-degrees-of-freedom single track vehicle model, in which some nonlinear terms are considered, is built firstly. Then, the nonlinear model is processed by the fuzzy technique and the T-S fuzzy model is designed.
Technical Paper

Pressure Control for Hydraulic Brake System Equipped with an Electro-Mechanical Brake Booster

2018-04-03
2018-01-0829
The Electro-Mechanical Brake Booster (Ebooster) is a critical component of the novel brake system for electric intelligent vehicles. It is independent of engine vacuum source, provides powerful active brake performance and can be combined with electric regenerative braking. In this paper, a brake control algorithm for hydraulic brake system equipped with an Ebooster is proposed. First, the configuration of the Ebooster is introduced and the system model including the permanent magnet synchronous motor (PMSM) and hydraulic brake system is established by Matlab/Simulink. Second, a Four-closed-loop algorithm is introduced for accurate active brake pressure control. Finally, according to the requirement of different brake force, series of simulations are carried out under active braking condition. The results show that the control algorithm introduced in this paper can ensure the brake hydraulic pressure tracking a target value precisely and show a good control performance.
Technical Paper

Pressure Optimization Control of Electro-Mechanical Brake System in the Process of ABS Working

2019-04-02
2019-01-1104
The electro-mechanical brake booster (EMBB) and hydraulic control unit (HCU) constitute the electro-mechanical brake system, which can meet the requirements of brake system for intelligent vehicles. It does not need vacuum source, provides active braking function, have high control accuracy and fast response. But it has two electronic control units (ECU), which need coordinated control. When ABS is triggered, the pressure of the master cylinder keeps rising and falling, and the pressure fluctuates greatly. This will lead to noise and reduce the durability of the system. In this paper, a pressure optimization control strategy under ABS condition is proposed. Firstly, the structure and control strategy of EMBB are introduced. Secondly, the braking characteristics without pressure optimization control are analyzed. Thirdly, based on the demand of maximum cylinder pressure, a three-closed-loop pressure optimization control strategy is established.
Technical Paper

Pressure Tracking Control of Electro-Mechanical Brake Booster System

2020-04-14
2020-01-0211
The Electro-Mechanical Brake Booster system (EMBB) is a kind of novel braking booster system, which integrates active braking, regenerative braking, and other functions. It usually composes of a servo motor and the transmission mechanism. EMBB can greatly meet the development needs of vehicle intelligentization and electrification. During active braking, EMBB is required to respond quickly to the braking request and track the target pressure accurately. However, due to the highly nonlinearity of the hydraulic system and EMBB, traditional control algorithms especially for PID algorithm do not work well for pressure control. And a large amount of calibration work is required when applying PID algorithms to pressure control in engineering.
Technical Paper

Regenerative Braking Pedal Decoupling Control for Hydraulic Brake System Equipped with an Electro-Mechanical Brake Booster

2019-04-02
2019-01-1108
Electrification and intelligence are the important development directions of vehicle techniques. The Electro-Mechanical Brake Booster (Ebooster) as a brake booster which is powered by a motor, can be used to replace the traditional vacuum booster. Ebooster not only improves the intelligence level of vehicle braking and significantly improves the braking performance, but also adapts to the application in new energy vehicles and facilitates coordinated regenerative braking. However, Ebooster cannot complete pedal decoupling independently. It needs to cooperate with other components to realize pedal decoupling. In this paper, a pedal decoupling control algorithm for regenerative brake, which is based on the coordination control of Ebooster and ESP, is proposed. First, regenerative braking strategy is designed to distribute the hydraulic brake force and regenerative braking force.
Technical Paper

Research on Adaptive Cruise Control Strategy Considering the Disturbance of Preceding Vehicle and Multi-Objective Optimization

2021-04-06
2021-01-0338
Adaptive Cruise Control (ACC) includes three modes: cruise control, car following control, and autonomous emergency braking. Among them, the car following control mode is mainly used to manage the speed and vehicle spacing approach the preceding vehicle within the range of smooth acceleration changes. In addition, although the motion information signal of the preceding vehicle can be collected by auxiliary equipment, it is still a random variable and normally regarded as a disturbance to affect the performance of vehicle controller. Therefore, this paper proposed an ACC strategy considering the disturbance of the preceding vehicle and multi-objective optimization.
Technical Paper

Research on Compensation Redundancy Control for Basic Force Boosting Failure of Electro-Booster Brake System

2020-04-14
2020-01-0216
As a new brake-by-wire solution, the electro-booster (Ebooster) brake system can work with the electronic stability program (ESP) equipped in the real vehicle to realize various excellent functions such as basic force boosting (BFB), active braking and energy recovery, which is promoting the development of smart vehicles. Among them, the BFB is the function of Ebooster's servo force to assist the driver's brake pedal force establishing high-intensity braking pressure. After the BFB function failure of the Ebooster, it was not possible to provide sufficient brake pressure for the driver's normal braking, and eventually led to traffic accidents. In this paper, a compensation redundancy control strategy based on ESP is proposed for the BFB failure of the self-designed Ebooster.
Technical Paper

Research on Yaw Stability Control of Unmanned Vehicle Based on Integrated Electromechanical Brake Booster

2020-04-14
2020-01-0212
The Electromechanical Brake Booster system (EMBB) integrates active braking and energy recovery and becomes a novel brake-by-wire solution that substitutes the vacuum booster. While the intelligent unmanned vehicle is in unstable state, the EMBB can improve the vehicle yaw stability more quickly and safely. In this paper, a new type of integrated EMBB has been designed, which mainly includes two parts: servo motor unit and hydraulic control unit. Aiming at the dynamic instability problem of intelligent unmanned vehicle, a three-layer vehicle yaw stability control structure including decision layer, distribution layer and execution layer is proposed based on integrated EMBB. Firstly, the decision layer calculates the ideal yaw rate and the side slip angle of the vehicle with the classic 2DOF vehicle dynamics model. The boundary of the stable region is determined by the phase plane method and the additional yaw moment is determined by the feedback PI control algorithm.
X