Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Active Noise Control Method Considering Auditory Characteristics

2012-04-16
2012-01-0993
In contrast to functionality and reliability, which are more and more assumed to be a natural and necessary condition of any vehicle, the performance of Noise, Vibration and Harshness (NVH) now belongs to those features which play an essential role for the customer's purchasing decision. Sound design and vehicle interior noise control are essential parts of NVH. One tool of the NVH solution toolbox is Active Noise Control (ANC). ANC technology aims to cancel unwanted noise by generating an “anti-noise” with equal amplitude and opposite phase. Owing to the fact that human hearing has selective sensitivity for different critical bands, a new control strategy of ANC, which selectively controls the noise of specific bandwidths according to the result of specific loudness and retains the part of noise created by the normal running of facilities, trying to attenuate the unwanted and unacceptable noise, has been proposed in this paper.
Technical Paper

Automobile Interior Noise Prediction Based on Energy Finite Element Method

2011-04-12
2011-01-0507
For the purpose of predicting the interior noise of a passenger automobile at middle and high frequency, an energy finite element analysis (EFEA) model of the automobile was created using EFEA method. The excitations including engine mount excitation and road excitation were measured by road experiment at a speed of 120 km/h. The sound excitation was measured in a semi-anechoic chamber. And the wind excitation was calculated utilizing numeric computation method of computational fluid dynamics (CFD). The sound pressure level (SPL) and energy density contours of the interior acoustic cavity of the automobile were presented at 2000 Hz. Meanwhile, the flexural energy density and flexural velocity of body plates were calculated. The SPL of interior noise was predicted and compared with the corresponding value of experiment.
Technical Paper

Computational Accuracy and Efficiency of the Element Types and Sizes for Car Acoustic Finite Element Model

2014-04-01
2014-01-0890
Automobile cabin acoustical comfort is one of the main features that may attract customers to purchase a new car. The acoustic cavity mode of the car has an effect on the acoustical comfort. To identify the factors affecting computing accuracy of the acoustic mode, three different element type and six different element size acoustic finite element models of an automobile passenger compartment are developed and experimentally assessed. The three different element type models are meshed in three different ways, tetrahedral elements, hexahedral elements and node coupling tetrahedral and hexahedral elements (tetra-hexahedral elements). The six different element size models are meshed with hexahedral element varies from 50mm to 75mm. Modal analysis test of the passenger car is conducted using loudspeaker excitation to identify the compartment cavity modes.
Journal Article

Further Study of the Vehicle Rattle Noise with Consideration of the Impact Rates and Loudness

2020-04-14
2020-01-1261
With the prevalent trend of the pure electric vehicle, vehicle interior noise has been reduced significantly. However, other noises become prominent in the cabin. Especially, the BSR noise generated by friction between parts and the clearance between components become the elements of complaints directly affect the quality of vehicles. Currently, the BSR noises are subjectively evaluated by experts, and the noise samples are simply labeled as ‘qualified’ or ‘unqualified’. Therefore, it is necessary to develop an evaluation model to assess the BSR noise objectively. In this paper, we study the vehicle rattle noise intensively. Several types of rattle noise were recorded in a semi-anechoic room. The recorded signals were then processed in the LMS test lab. to extract the single impact segments. A pool of simulated signals with different impact rates (number of impacts per second) and various loudness was synthesized for analyzation.
Technical Paper

Interior Noise Analysis of a Commercial Vehicle Cab by Using Finite Element Method and Boundary Element Methods

2016-09-27
2016-01-8051
In order to predict the interior noise of a commercial vehicle cab, a finite element model of a heavy commercial vehicle cab was established. An acoustic-structure coupling model of the cab was built based on experimentally validated structure model and acoustic model of a commercial vehicle cab. Moreover, based on the platform of Virtual. Lab, the acoustic field modes of the acoustic model of the commercial vehicle cab and the coupled modes of the acoustic-structure coupling model were analyzed by using the acoustic-structure coupling analysis technique. The excitation of the vehicle cab was tested at an average speed on an asphalt road. Then, the interior noise of the heavy commercial vehicle cab was predicted based on FEM-FEM method and FEM-BEM method with all the parameters and excitation. Furthermore, the predicted interior noise of the commercial vehicle cab was compared with the tested interior noise.
Technical Paper

Interior Noise Prediction and Analysis of Heavy Commercial Vehicle Cab

2011-09-13
2011-01-2241
The basic theory of statistical energy analysis (SEA) is introduced, a commercial heavy duty truck cab is divided into 35 subsystems applying SEA method, and a three dimensional SEA model of the commercial heavy duty truck cab is created. Three basic parameters including modal density, damping loss factor and coupling loss factor are calculated with analytical and experimental methods. The modal density of the regular wall plate of the cab is calculated with traditional formula. The damping loss factors of the regular and complicated plates are obtained using analytical method and steady energy stream method. Meanwhile, the coupling loss factors of structure-structure, structure-sound cavity, and cavity-cavity are also calculated. Four kinds of excitations are in the SEA model, including sound radiation excitation of engine, engine mount vibration excitation, road excitation and wind excitation.
Technical Paper

Lightweight Design and Multi-Objective Optimization for a Lower Control Arm Considering Multi-Disciplinary Constraint Condition

2019-04-02
2019-01-0822
The requirement for low emissions and better vehicle performance has led to the demand for lightweight vehicle structures. Two new lightweight methods of design and optimization for the lower control arm were proposed in this research to improve the effectiveness of the traditional lightweight method. Prior to the two lightweight design and optimization methods, the static performance, including strength, stiffness and mode, and fatigue performance for the lower control arm were analyzed and they provided constraints for subsequent design and optimization. The first method of lightweight design and optimization was integrated application of topography optimization, size optimization, shape optimization and free shape optimization for the control arm. Topography optimization was first applied to find the optimal distribution form of reinforcement rib for the lower control arm. Size optimization was then applied in this study to optimize the plate thickness.
Technical Paper

Multi-Objective Optimization of Interior Noise of an Automotive Body Based on Different Surrogate Models and NSGA-II

2018-04-03
2018-01-0146
This paper studies a multi-objective optimization design of interior noise for an automotive body. An acoustic-structure coupled model with materials and properties was established to predict the interior noise based on a passenger car. Moreover, three kinds of approximation models related damping thickness and the root mean square of the driver’s ear sound pressure level were established through Latin hypercube method and the corresponding experiments. The prediction accuracy was analyzed and compared for the approximate response surface model, Kriging model and Radial Basis Function neural network model. On this basis, multi-objective optimization of the vehicle interior noise was conducted by using NSGA-II. According to the optimization results, the damping composite structure was applied on the car body structure. Then, the comparison of sound pressure level response at driver’s ear location before and after optimization was performed at speed of 60 km/h on a smooth road.
Journal Article

Objective Evaluation of Interior Sound Quality in Passenger Cars Using Artificial Neural Networks

2013-04-08
2013-01-1704
In this research, the interior noise of a passenger car was measured, and the sound quality metrics including sound pressure level, loudness, sharpness, and roughness were calculated. An artificial neural network was designed to successfully apply on automotive interior noise as well as numerous different fields of technology which aim to overcome difficulties of experimentations and save cost, time and workforce. Sound pressure level, loudness, sharpness, and roughness were estimated by using the artificial neural network designed by using the experiment values. The predicted values and experiment results are compared. The comparison results show that the realized artificial intelligence model is an appropriate model to estimate the sound quality of the automotive interior noise. The reliability value is calculated as 0.9995 by using statistical analysis.
Journal Article

Prediction of Automotive Ride Performance Using Adaptive Neuro-Fuzzy Inference System and Fuzzy Clustering

2015-06-15
2015-01-2260
Artificial intelligence systems are highly accepted as a technology to offer an alternative way to tackle complex and non-linear problems. They can learn from data, and they are able to handle noisy and incomplete data. Once trained, they can perform prediction and generalization at high speed. The aim of the present study is to propose a novel approach utilizing the adaptive neuro-fuzzy inference system (ANFIS) and the fuzzy clustering method for automotive ride performance estimation. This study investigated the relationship between the automotive ride performance and relative parameters including speed, spring stiffness, damper coefficients, ratios of sprung and unsprung mass. A Takagi-Sugeno fuzzy inference system associated with artificial neuro network was employed. The C-mean fuzzy clustering method was used for grouping the data and identifying membership functions.
Journal Article

Prediction of the Sound Absorption Performance of Polymer Wool by Using Artificial Neural Networks Model

2014-04-01
2014-01-0889
This paper proposes a new method of predicting the sound absorption performance of polymer wool using artificial neural networks (ANN) model. Some important parameters of the proposed model have been adjusted to best fit the non-linear relationship between the input data and output data. What's more, the commonly used multiple non-linear regression model is built to compare with ANN model in this study. Measurements of the sound absorption coefficient of polymer wool based on transfer function method are also performed to determine the sound absorption performance according to GB/T18696. 2-2002 and ISO10534- 2: 1998 (E) standards. It is founded that predictions of the new model are in good agreement with the experiment results.
Technical Paper

Sound Absorption Optimization of Porous Materials Using BP Neural Network and Genetic Algorithm

2016-04-05
2016-01-0472
In recent years, the interior noise of automobile has been becoming a significant problem. In order to reduce the noise, porous materials have been widely applied in automobile manufacturing. In this study, the simulation method and optimal analysis are used to determine the optimum sound absorption of polyurethane foam. The experimental simulation is processed based on the Johnson-Allard model. In the model, the foam adheres to a hard wall. The incident wave is plane wave. The function of the model is to calculate the noise reduction coefficient of polyurethane foam with different thickness, density and porosity. The back propagation neural network coupled with genetic optimization technique is utilized to predict the optimum sound absorption. A developed back propagation neural network model is trained and tested by the simulation data.
Journal Article

Vehicle Interior Sound Quality Analysis by Using Grey Relational Analysis

2014-04-01
2014-01-1976
In this paper, the relationship was investigated between objective psychoacoustic parameters, A-weighted sound pressure level (SPL) and the results of the subjective evaluation by using grey relational analysis (GRA). The sounds were recorded with eight different passenger cars at four different running conditions. The sound quality indices were calculated, including loudness, sharpness, roughness, fluctuation, and A-weighted SPL. Subjective evaluation was performed by thirty subjects using rating scale method. GRA was compared with traditional correlation analysis, and the comparison shows that some hidden information which could not be found in the traditional correlation analysis was revealed. In order to know the further relationship between fluctuation and subjective evaluation, another subjective evaluation was performed by the same 30 subjects. The result demonstrates that the relationship revealed from GRA is correct.
X