Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Comprehensive Testing and Evaluation Approach for Autonomous Vehicles

Performance testing and evaluation always plays an important role in the developmental process of a vehicle, which also applies to autonomous vehicles. The complex nature of an autonomous vehicle from architecture to functionality demands even more quality-and-quantity controlled testing and evaluation than ever before. Most of the existing testing methodologies are task-or-scenario based and can only support single or partial functional testing. These approaches may be helpful at the initial stage of autonomous vehicle development. However, as the integrated autonomous system gets mature, these approaches fall short of supporting comprehensive performance evaluation. This paper proposes a novel hierarchical and systematic testing and evaluation approach to bridge the above-mentioned gap.
Journal Article

A Novel Method of Radar Modeling for Vehicle Intelligence

The conventional radar modeling methods for automotive applications were either function-based or physics-based. The former approach was mainly abstracted as a solution of the intersection between geometric representations of radar beam and targets, while the latter one took radar detection mechanism into consideration by means of “ray tracing”. Although they each has its unique advantages, they were often unrealistic or time-consuming to meet actual simulation requirements. This paper presents a combined geometric and physical modeling method on millimeter-wave radar systems for Frequency Modulated Continuous Wave (FMCW) modulation format under a 3D simulation environment. With the geometric approach, a link between the virtual radar and 3D environment is established. With the physical approach, on the other hand, the ideal target detection and measurement are contaminated with noise and clutters aimed to produce the signals as close to the real ones as possible.
Technical Paper

A Novel Vision-Based Framework for Real-Time Lane Detection and Tracking

Lane detection is one of the most important part in ADAS because various modules (i.e., LKAS, LDWS, etc.) need robust and precise lane position for ego vehicle and traffic participants localization to plan an optimal routine or make proper driving decisions. While most of the lane detection approaches heavily depend on tedious pre-processing and great amount of assumptions to get reasonable result, the robustness and efficiency are deteriorated. To address this problem, a novel framework is proposed in this paper to realize robust and real-time lane detection. This framework consists of two branches, where canny edge detection and Progressive Probabilistic Hough Transform (PPHT) are introduced in the first branch for efficient detection.
Technical Paper

Lidar Inertial Odometry and Mapping for Autonomous Vehicle in GPS-Denied Parking Lot

High-precision and real-time ego-motion estimation is vital for autonomous vehicle. There is a lot GPS-denied maneuver such as underground parking lot in urban areas. Therefore, the localization system relying solely on GPS cannot meets the requirements. Recently, lidar odometry and visual odometry have been introduced into localization systems to overcome the problem of missing GPS signals. Compared with visual odometry, lidar odometry is not susceptible to light, which is widely applied in weak-light environments. Besides, the autonomous parking is highly dependent on the geometric information around the vehicle, which makes building map of surroundings essential for autonomous vehicle. We propose a lidar inertial odometry and mapping. By sensor fusion, we compensate for the drawback of applying a single sensor, allowing the system to provide a more accurate estimate.
Technical Paper

Study on Comprehensive Evaluation Index of Front Collision Hazard of Intelligent Vehicle

Collision avoidance technology is one of the key areas in the longitudinal safety research of intelligent vehicles. For the research of collision avoidance system, the existing methods usually use the evaluation index based on time interval or braking process to carry out risk assessment. In order to overcome the shortcomings of the formulas for describing the longitudinal hazard degree established in most studies, such as great differences, inconsistent standards and weak normalization, a comprehensive evaluation method for the longitudinal hazard in front-impact scenarios is established. This method takes into account both the analysis of time interval and braking process, and considers the non-linear variation of the longitudinal hazard degree with the real-time distance and speed of two vehicles. It can describe the longitudinal hazard degree of vehicles in dangerous traffic scenarios.