Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Cooperative Estimation of Road Grade Based on Multidata Fusion for Vehicle Platoon with Optimal Energy Consumption

2020-04-14
2020-01-0586
The platooning of connected automated vehicles (CAV) possesses the significant potential of reducing energy consumption in the Intelligent Transportation System (ITS). Moreover, with the rapid development of eco-driving technology, vehicle platooning can further enhance the fuel efficiency by optimizing the efficiency of the powertrain. Since road grade is a main factor that affects the energy consumption of a vehicle, the estimation of the road grade with high accuracy is the key factor for a connected vehicle platoon to optimize energy consumption using vehicle-to-vehicle (V2V) communication. Commonly, the road grade is quantified by single consumer grade global positioning system (GPS) with the geodetic height data which is rough and in the meter-level, increasing the difficulty of precisely estimating the road grade.
Journal Article

Design of Anti-lock Braking System Based on Regenerative Braking for Distributed Drive Electric Vehicle

2018-04-03
2018-01-0816
In this article, the regenerative braking system is designed, which can realize the torque allocation between electric braking and hydraulic braking, where the cost function designed in this article considers factors of braking torque following effect, energy regenerative power, and hydraulic braking consumed power. In addition, a complete anti-lock braking system (ABS) is designed, which is based on regenerative braking. With the optimal slip ratio as control target, target wheel speed, control wheel speed, braking torque control strategy, and enable/disenable control logic of ABS are determined. By MATLAB/Simulink-DYNA4 co-simulation and real vehicle test, the feasibility and applicability of ABS based on regenerative braking are verified, under the condition of small severity of braking.
Technical Paper

Design of Automatic Parallel Parking System Based on Multi-Point Preview Theory

2018-04-03
2018-01-0604
As one of advanced driver assistance systems (ADAS), automatic parking system has great market prospect and application value. In this paper, based on an intelligent vehicle platform, an automatic parking system is designed by using multi-point preview theory. The vehicle kinematics model was established, based on Ackermann steering principle. By analyzing working conditions of parallel parking, complex constraint condition of parking trajectory is established and reference trajectory based on sine wave is proposed. In addition, combined with multi-point preview theory, the design of trajectory following controller for automatic parking is completed. The cost function is designed, which consider the trajectory following effect and the degree of easy handling. The optimization of trajectory following control is completed by using the cost function.
X