Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Comprehensive Testing and Evaluation Approach for Autonomous Vehicles

Performance testing and evaluation always plays an important role in the developmental process of a vehicle, which also applies to autonomous vehicles. The complex nature of an autonomous vehicle from architecture to functionality demands even more quality-and-quantity controlled testing and evaluation than ever before. Most of the existing testing methodologies are task-or-scenario based and can only support single or partial functional testing. These approaches may be helpful at the initial stage of autonomous vehicle development. However, as the integrated autonomous system gets mature, these approaches fall short of supporting comprehensive performance evaluation. This paper proposes a novel hierarchical and systematic testing and evaluation approach to bridge the above-mentioned gap.
Technical Paper

Analysis of Illumination Condition Effect on Vehicle Detection in Photo-Realistic Virtual World

Intelligent driving, aimed for collision avoidance and self-navigation, is mainly based on environmental sensing via radar, lidar and/or camera. While each of the sensors has its own unique pros and cons, camera is especially good at object detection, recognition and tracking. However, unpredictable environmental illumination can potentially cause misdetection or false detection. To investigate the influence of illumination conditions on detection algorithms, we reproduced various illumination intensities in a photo-realistic virtual world, which leverages recent progress in computer graphics, and verified vehicle detection effect there. In the virtual world, the environmental illumination is controlled precisely from low to high to simulate different illumination conditions in the driving scenarios (with relative luminous intensity from 0.01 to 400). Sedan cars with different colors are modelled in the virtual world and used for detection task.
Technical Paper

Lidar Inertial Odometry and Mapping for Autonomous Vehicle in GPS-Denied Parking Lot

High-precision and real-time ego-motion estimation is vital for autonomous vehicle. There is a lot GPS-denied maneuver such as underground parking lot in urban areas. Therefore, the localization system relying solely on GPS cannot meets the requirements. Recently, lidar odometry and visual odometry have been introduced into localization systems to overcome the problem of missing GPS signals. Compared with visual odometry, lidar odometry is not susceptible to light, which is widely applied in weak-light environments. Besides, the autonomous parking is highly dependent on the geometric information around the vehicle, which makes building map of surroundings essential for autonomous vehicle. We propose a lidar inertial odometry and mapping. By sensor fusion, we compensate for the drawback of applying a single sensor, allowing the system to provide a more accurate estimate.
Technical Paper

Overtaking or Merging? Eco-Routing Decision and Speed Trajectory with Full Terrain Information

With vehicle platooning becoming an important research field in recent years, it is now imperative to introduce platoons as part of the dynamic environment, considering overtaking and merging possibilities. This article studies optimal speed trajectories and longitudinal control with optimized energy efficiency for an autonomous vehicle with several preceding platoons and full terrain information. It aims at improving the energy efficiency of vehicles with Advanced Driver Assistance Systems (ADAS). A forward discrete dynamic programming (DDP) algorithm with distance as the discretization basis is used to derive speed trajectories in the trade-off between air drag reduction and energy saved by utilizing the road slope information. The problem is decomposed into decisions whether to overtake or to merge into the nearest platoon with the assumption of sufficient distance among platoons.
Technical Paper

Recognition and Classification of Vehicle Target Using the Vehicle-Mounted Velodyne LIDAR

This paper describes a novel recognition and classification method of vehicle targets in urban road based on a vehicle-mounted Velodyne HDL64E light detection and ranging (LIDAR) system. The autonomous vehicle will choose different driving strategy according to the surrounding traffic environments to guarantee that the driving is safe, stable and efficient. It is helpful for controller to provide the efficient stagey to know the exact type of vehicle around. So this method concentrates on reorganization and classification the type of vehicle targets so that the controller can provide a safe and efficient driving strategy for autonomous ground vehicles. The approach is targeted at high-speed ground vehicle, so real-time performance of the method plays a critical role. In order to improve the real-time performance, some methods of data preprocessing should be taken to simplify the large-size long-range 3D point clouds.
Journal Article

Research on Multi-Vehicle Coordinated Lane Change of Connected and Automated Vehicles on the Highway

With the rapid development of modern economy and society, traffic congestion has become an increasingly serious problem. Vehicle cooperative driving can alleviate traffic congestion and improve road traffic capacity. Compare with vehicle separate control, cooperative driving combines various vehicle systems, and highly integrates information on obstacle location, vehicle status and driving intention. Then the controller uniformly issues instructions to ensure the orderly driving of the platoon. In the cooperative driving platoon, the displacement difference and the speed difference between vehicles have a certain relationship, which reduces the possibility of traffic accidents and then improves the safety of driving. In the process of cooperative driving, if there are multiple vehicles whose speeds don’t meet the current lane requirements, or if there are obstacles ahead, multi-vehicle lane change measures must be taken.
Technical Paper

Trajectory Planning and Tracking for Four-Wheel-Steering Autonomous Vehicle with V2V Communication

Lane-changing is a typical traffic scene effecting on road traffic with high request for reliability, robustness and driving comfort to improve the road safety and transportation efficiency. The development of connected autonomous vehicles with V2V communication provide more advanced control strategies to research of lane-changing. Meanwhile, four-wheel steering is an effective way to improve flexibility of vehicle. The front and rear wheels rotate in opposite direction to reduce the turning radius to improve the servo agility operation at the low speed while those rotate in same direction to reduce the probability of the slip accident to improve the stability at the high speed. Hence, this paper established Four-Wheel-Steering(4WS) vehicle dynamic model and quasi real lane-changing scenes to analyze the motion constraints of the vehicles.