Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Aeroelastic Response and Structural Improvement for Heavy-Duty Truck Cab Deflectors

2019-01-14
2019-01-5004
Numerical simulations on the fluid-structure interaction were conducted using commercial software STAR-CCM+ and ABAQUS. The aeroelastic responses of a deflector under several different working conditions were simulated utilizing finite volume and finite element methods to investigate the aeroelastic problem of automotive deflectors. Results showed that the structural response of a top deflector is minimal under the influence of aerodynamics given its large structural stiffness. The size of the top deflector was optimised by using thickness as a variable. The volume and quality of the top deflector were significantly reduced, and its lightweight performance was improved to satisfy the stiffness performance requirement. The vibration of a side deflector structure was mainly induced by the turbulence on the structure surface. The amplitude of vibration was small and the vibration gradually converged in a few seconds without obvious regularity.
Technical Paper

Auxiliary Drive Control Strategy of Hydraulic Hub-Motor Auxiliary System for Heavy Truck

2016-09-27
2016-01-8113
To improve traditional heavy commercial vehicles performance, this paper introduces a novel hydraulic hub-motor auxiliary system, which could achieve auxiliary driving and auxiliary braking function. Firstly, the system configuration and operation modes are described. In order to achieve coordinating control and distribution of the engine power between mechanical and hydraulic paths, the paper proposes an optimal algorithm based on enhance of vehicle slip efficiency and the results show that displacement of hydraulic variable pump relates with the transmission gear ratio. And then the hydraulic pump displacement controller is designed, in which the feedforward and feedback strategy is adopted. Considering the characteristics of hydraulic hub-motor auxiliary system, a layered auxiliary drive control strategy is proposed in the paper, which includes signal layers, core control layers and executive layers.
Technical Paper

Comparative Analysis of Truck Ride Comfort of 4 Degree of Freedom Rigid-Elastic Model with 2 Degree of Freedom Rigid Model

2015-04-14
2015-01-0615
In order to study the influence of body flexibility on the truck ride comfort, a 4 DOF half vibration model of truck based on the motion synthesis between rigid body and body flexibility is established using elastic beam theory of equal section with both free ends. At the same time, a corresponding 2 DOF rigid vibration model is also built. The frequency response functions of system and response variables of two models are derived based on front wheel. The power spectral densities and the root mean square values of body acceleration, dynamic deflections and relative dynamic loads are obtained. By comparing the simulation results of rigid-elastic model and rigid model, it shows that body flexibility has a great impact on truck ride comfort and it cannot be ignored.
Technical Paper

Deterioration Characteristic of Catalyzed DPF Applied on Diesel Truck Durable Ageing

2018-09-10
2018-01-1701
In this paper, it was researched the degradation characteristics of catalytic performance of three kinds of DPFs (C1, C2 and C3, with precious metal concentrations being 15, 25 and 35 g/ft3 respectively) after diesel truck aging. It is found out that the crystallinity of three kinds of DPF samples (Used) in full vehicle aging was higher than that of fresh samples (Fresh) and aged samples (Aged) in the laboratory. Compared with Fresh samples, the concentration of Pt atom in precious metal on the surface of Aged and Used samples tends to decrease in most cases. Activities to CO and C3H8 of Aged and Used samples of three kinds of DPFs had all been degraded, and activity degradation showed a substantial correlation with concentration reduction rate of precious metal on the carrier surface. NO2 productivity of Used samples all rose. Crystallinity of DPF samples after full vehicle aging in Inlet, Middle and Outlet areas successively increased.
Journal Article

Fatigue Life Estimation of Front Subframe of a Passenger Car Based on Modal Stress Recovery Method

2015-04-14
2015-01-0547
In this paper, the dynamic stress of the front subframe of a passenger car was obtained using modal stress recovery method to estimate the fatigue life. A finite element model of the subframe was created and its accuracy was checked by modal test in a free hanging state. Furthermore, the whole vehicle rigid-flexible coupling model of the passenger car was built up while taking into account the flexibility of the subframe. Meanwhile, the road test data was used to verify the validity of the dynamic model. On this basis, the modal displacement time histories of the subframe were calculated by a dynamic simulation on virtual proving ground consisting of Belgian blocks, cobblestone road and washboard road. By combining the modal displacement time histories with modal stress tensors getting from normal mode analysis, the dynamic stress time histories of the subframe were obtained through modal stress recovery method.
Technical Paper

Fuzzy PID Based Optimization of Starting Control for AMT Clutch of Heavy-duty Trucks

2018-04-03
2018-01-1166
Starting control has become a troublesome issue in the developing field of the control system for heavy-duty trucks, due to the complexity of vehicle driving and the variability of driver's intention. The too fast clutch engagement may result in serious impact, influence on the comfort and fatigue life, and even the engine flameout, while the too slow clutch engagement may lead to long time of friction, the increased temperature, and accelerated wear of friction pair, as well as influence on the power performance and fatigue life[1]. Therefore, the key technique of starting control is clutch engagement control, for which the fuzzy PID based optimization of starting control for AMT clutch is proposed, with the pneumatic AMT clutch of heavy-duty trucks as the research object.
Journal Article

Optimization Matching of Powertrain System for Self-Dumping Truck Based on Grey Relational Analysis

2015-04-14
2015-01-0501
In this paper, the performance simulation model of a domestic self-dumping truck was established using AVL-Cruise software. Then its accuracy was checked by the power performance and fuel economy tests which were conducted on the proving ground. The power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, overtaking acceleration time from 60 to 70km/h, maximum speed and maximum gradeability, while the composite fuel consumption per hundred kilometers was taken as an evaluation index of fuel economy. A L9 orthogonal array was applied to investigate the effect of three matching factors including engine, transmission and final drive, which were considered at three levels, on the power performance and fuel economy of the self-dumping truck. Furthermore, the grey relational grade was proposed to assess the multiple performance responses according to the grey relational analysis.
Technical Paper

Optimization for Driveline Parameters of Self-Dumping Truck Based on Particle Swarm Algorithm

2015-04-14
2015-01-0472
In this study, with the aim of reducing fuel consumption and improving power performance, the optimization for the driveline parameters of a self-dumping truck was performed by using a vehicle performance simulation model. The accuracy of this model was checked by the power performance and fuel economy tests. Then the transmission ratios and final drive ratio were taken as design variables. Meanwhile, the power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, maximum speed and maximum gradeability, while the combined fuel consumption of C-WTVC drive cycle was taken as an evaluation index of fuel economy. The multi-objective optimization for the power performance and fuel economy was then performed based on particle swarm optimization algorithm, and the Pareto optimal set was obtained. Furthermore, the entropy method was proposed to determine the weight of fuel consumption and acceleration time.
Technical Paper

Optimization of Bus Body Based on Vehicle Interior Vibration

2012-04-16
2012-01-0221
In order to solve the abnormal vibration of a light bus, order tracking analysis of finite element simulation and road test was made to identify the vibration source, finding that the rotation angular frequency of the wheels and the first two natural frequency of the body structure overlaps, resonance occurring which lead to increased vibration. To stagger the first two natural frequency and excitation frequency of the body, thickness of sheet metal and skeleton of the body-in-white were chosen as the design variables, rise of the first two natural frequency of the body-in-white as the optimization objective, optimal design and sensitivity analysis of the body-in-white was carried out with the modal analysis theory. Combining with the modal sensitivity and mass sensitivity of sheet metal and skeleton, the optimum design was achieved and tests analysis was conducted.
Technical Paper

Optimization of Suspension System of Self-Dumping Truck Using TOPSIS-based Taguchi Method Coupled with Entropy Measurement

2016-04-05
2016-01-1385
This study presents a hybrid optimization approach of TOPSIS-based Taguchi method and entropy measurement for the determination of the optimal suspension parameters to achieve an enhanced compromise among ride comfort, road friendliness which means the extent of damage exerted on the road by the vehicles, and handling stabilities of a self-dumping truck. Firstly, the full multi-body dynamic vehicle model is developed using software ADAMS/Car and the vehicle model is then validated through ride comfort road tests. The performance criterion for ride comfort evaluation is identified as root mean square (RMS) value of frequency weighted acceleration of cab floor, while the road damage coefficient is used for the evaluation of the road-friendliness of a whole vehicle. The lateral acceleration and roll angle of cab were defined as evaluation indices for handling stability performance.
Technical Paper

Parameter Matching of Planetary Gearset Characteristic Parameter of Power-Spilt Hybrid Vehicle

2021-09-16
2021-01-5088
To quickly and efficiently match the planetary gearset characteristic parameter of power-spilt hybrid vehicles so that their oil-saving potential can be maximized, this study proposes a parameter matching method that comprehensively considers energy management strategy and driving cycle based on an analysis of vehicle instantaneous efficiency. The method is used to match the planetary characteristic parameter of a power-split hybrid light truck. The relevant conclusions are compared with the influence of various planetary characteristic parameters on fuel consumption obtained through simulation under typical operating conditions. The simulation results show that the influence laws of the various planetary characteristic parameters on vehicle average efficiency are similar to those on fuel consumption. The proposed parameter-matching method based on vehicle efficiency analysis can effectively match the planetary characteristic parameter for power-split hybrid powertrains.
Technical Paper

Research on Roll Vibration Characteristics of a Truck's Front Suspension

2015-04-14
2015-01-0635
For the roll vibration problem of a Truck, a 4-DOF roll vibration model of its front suspension system was built. According to dynamics theory, the complex modal vibration modes of the model were all obtained. At the same time, the frequency response functions of frame roll angle acceleration, the relative dynamic load of wheel and the suspension dynamic deflection were respectively presented. Then their characteristics were respectively researched. In the process of characteristic analysis, a new system parameter was proposed, which is the space ratio of the space between suspensions of left and right sides and the wheel track of the front axle (space ratio in short). At last, the influence of system parameters on the vibration transmission property was also reserached, which included the natural frequency of the frame, the damping ratio, the stiffness ratio, the mass ratio, the rotational inertia ratio and the space ratio.
Technical Paper

Simulation of Straight-Line Type Assist Characteristic of Electric Power-Assisted Steering

2004-03-08
2004-01-1107
Electric Power-Assisted Steering (EPAS) is a new power steering technology that will define the future of vehicle steering. The assist of EPAS is the function of the steering wheel torque and vehicle velocity. The assist characteristic of EPAS is set by control software, which is one of the key issues of EPAS. The straight-line type assist characteristic has been used in some current EPAS products, but its influence on the steering maneuverability and road feel hasn't been explicitly studied in theory. In this paper, the straight-line type assist characteristic is analyzed theoretically. Then a whole vehicle dynamic model used to study the straight-line type assist characteristic is built with ADAMS/Car and validated with DCF (Driver Control Files) mode of ADAMS/Car. Based on the whole vehicle dynamic model, the straight-line type assist characteristic's influence on the steering maneuverability and road feel is investigated.
Technical Paper

Study on the Influence of Different Factors on Heavy Truck Ride Comfort

2016-04-05
2016-01-0440
The ride comfort of heavy trucks is related to many factors, which include vehicle operating scenarios and vehicle structure parameters. An investigation of the influence of different factors on the ride comfort of heavy trucks was conducted. Based on the elastic theory of a uniform Euler-Bernoulli beam with both ends free, a 6 degree of freedom (DOF) half rigid-elastic vibration model of the vertical dynamic response was developed. The rigid-elastic model is more suitable to describe the actual movement of heavy trucks. The DOFs include vertical displacements of the body and each of two axles, the pitch displacement of the body, and the first and second order bending displacements of the body. The root mean square (RMS) values of body accelerations, dynamic deflections and relative dynamic loads form the evaluation index. Based on the rigid-elastic model, the influence of different factors on the ride comfort of heavy trucks is analyzed in the frequency domain.
X