Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

A Comparison of a Semi-Active Inerter and a Semi-Active Suspension

Inerters have become a hot topic in recent years, especially in vehicle, train, and building suspension systems. The performance of a passive inerter and a semi-active inerter was analyzed and compared with each other and it showed that the semi-active inerter has much better performance than the passive inerter, especially with the Hybrid control method. Eight different layouts of suspensions were analyzed with a quarter car model in this paper. The adaptation of dimensionless parameters was considered for a semi-active suspension and the semi-active inerters. The performance of the semi-active inerter suspensions with different layouts was compared with a semi-active suspension with a conventional parallel spring-damper arrangement. It shows a semi-active suspension, with more simple configuration and lower cost, has similar or better compromise between ride and handling than a semi-active inerter with the Hybrid control.
Technical Paper

An Optimization of Suspension Linkages for Wheel-Legged Vehicle

The guiding mechanism of vehicle suspension can keep the wheels moving along planned trajectory. The geometrical design of the reasonable suspension guide mechanism can reduce the vibration transmitted to the body, improve trafficability and handling stability. The vehicle suspension design method was applied to the wheel-legged vehicle, enhancing ride performance. The optimization of suspension hard points can be obtained by using single variable method, adjusting each hard point coordinate independently. It is also widely recommended by using intelligent algorithm to solve well-designed multi-objective parameter optimization function. In this study, the multi-objective parameter optimization function was solved by using the NSGA-II (Non-dominated Sorted Genetic Algorithm-II). Computer simulations with half-car model were used to support the analysis in this study. ADAMS multibody dynamics software was also used to verify the reliability of the results.
Journal Article

Analysis of Performance Parameters of Torsional Vibration Damper Under Various Operating Conditions

The performance parameters of torsional vibration damper, including stiffness and damping, have great influence on the torsional vibration of automobile driveline. At present, the research on torsional vibration damper mainly concentrates on the torsional stiffness, but rarely on the torsional damping characteristics. This paper systematically studied the effect of torsional stiffness and damping on torsional vibration of automobile driveline under uniform speed conditions, accelerated and decelerated conditions, idling conditions and resonance conditions. The requirements on stiffness and damping of various operating conditions were summarized. The effect and requirements researched were useful to performance match design of torsional vibration damper.
Technical Paper

Calculation and Analysis of Stiffness of Taper-Leaf Spring with Variable Stiffness

Aiming at the difficulty of sovling the stiffness calculation of taper-leaf spring with variable stiffness, a combined method was proposed, which combine superposition method and finite difference method. Then the calculation results of different differential segments were compared with experimental results. The compared results show that the proposed method is effective and simple. So it has some practical significance in designing the taper-leaf spring. In addition, based on the stiffness test of the taper-leaf spring, the proper adjustments to the correction factor of the single parabolic leaf spring stiffness formula was recommended(ξ =0.92-0.96).
Technical Paper

Chassis Tuning Study of a Commercial Vehicle

This paper presents the study of chassis tuning of a commercial vehicle, which has a rear suspension with dual stage leaf spring assembly and a front suspension with double wishbone torsion bar. To balance the handling and ride performance of the vehicle, it is necessary to tune the key suspension parameters of the chassis including the dual stage stiffness of the leaf spring, the contact load of the leaf spring, the torsional rigidity of the torsion bar, the force curve of the front and rear dampers etc. The chassis tuning process of a physical commercial vehicle was first put forward. In the proposed flowchart, the kinematics and statics of front & rear suspensions were checked at the beginning of the tuning. Then the tire mechanical characteristics were tested by using a plate-type tire tester and the inertial parameters of the vehicle were indirectly measured. The K&C characteristics of front and rear suspensions were also tested and compared with the benchmark vehicle's.
Journal Article

Cooperative Optimization of Vehicle Ride Comfort and Handling Stability by Integrated Control Strategy

Vehicle needs suspension and steering systems with different features to fit different driving conditions. In normal straight driving condition, soft suspension and heavy steering systems are needed to achieve better ride comfort and straight line driving stability; in turning conditions, hard suspension and lightweight steering systems are needed to get better handing stability. The semi-active suspension system with Magneto-Rheological dampers can improve the ride comfort and handling performance of vehicle. Electrical power steering system is developed rapidly due to its portable and flexible operations as well as stable steering performance.
Technical Paper

Design and Control of Torque Feedback Device for Driving Simulator Based on MR Fluid and Coil Spring Structure

Since steering wheel torque feedback is one of the crucial factors for drivers to gain road feel and ensure driving safety, it is especially important to simulate the steering torque feedback for a driving simulator. At present, steering wheel feedback torque is mainly simulated by an electric motor with gear transmission. The torque response is typically slow, which can result in drivers’ discomfort and poor driving maneuverability. This paper presents a novel torque feedback device with magnetorheological (MR) fluid and coil spring. A phase separation control method is also proposed to control its feedback torque, including spring and damping torques respectively. The spring torque is generated by coil spring, the angle of coil spring can be adjusted by controlling a brushless DC motor. The damping torque is generated by MR fluid, the damping coefficient of MR fluid can be adjusted by controlling the current of excitation coil.
Technical Paper

Experimental and Analytical Property Characterization of a Self-Damped Pneumatic Suspension System

This study investigates the fundamental stiffness and damping properties of a self-damped pneumatic suspension system, based on both the experimental and analytical analyses. The pneumatic suspension system consists of a pneumatic cylinder and an accumulator that are connected by an orifice, where damping is realized by the gas flow resistance through the orifice. The nonlinear suspension system model is derived and also linearized for facilitating the properties characterization. An experimental setup is also developed for validating both the formulated nonlinear and linearized models. The comparisons between the measured data and simulation results demonstrate the validity of the models under the operating conditions considered. Two suspension property measures, namely equivalent stiffness coefficient and loss factor, are further formulated.
Technical Paper

Improving Light Bus Handling and Stability by Anti-roll Bar and Bushing Adjustment

In order to improve the handling and stability of a light bus at high speed, a virtual model was established in Adams-Car and its anti-roll bar and bushing parameters were virtually optimized. The tyre mechanical characteristics were firstly tested by using a plate-type tyre tester and the Magic Formula parameters of the tyre were obtained. Then the virtual bus model's handling performance were studied by the simulation of central steering test and steady static circular test. An optimal matching method was put forward. By using genetic algorithm to conduct optimization, the optimised parameters were obtained. After that the anti-roll bar and bushing samples were respectively manufactured. At last, the comparative trials were performed in an automotive proving ground, and the subjective evaluation of the light bus's handling and stability was taken by three specialized assessors.
Technical Paper

One Calculation Method of the Contact Load of a Two-Level Variable Stiffness Suspension

This paper presented one calculation method of the contact load, which is the load acted on the spring at the moment when the second-level stiffness of the spring just begins to work. In the proposed method, the contact load calculation mainly based on the dynamic load of the unsprung mass and the road grades and the commonly driving speed were also considered. A semiempirical formula of the contact load was put forward. Then the contact load of the commercial bus's rear suspension was respectively calculated by using the proposed formula and traditional methods(geometric mean method and average load method) to compare each other and to verify the new method. Later, the spring samples were respectively manufactured based on the calculation results. At last, the validation tests were respectively performed in an automotive proving ground.
Technical Paper

Optimization of Suspension System of Self-Dumping Truck Using TOPSIS-based Taguchi Method Coupled with Entropy Measurement

This study presents a hybrid optimization approach of TOPSIS-based Taguchi method and entropy measurement for the determination of the optimal suspension parameters to achieve an enhanced compromise among ride comfort, road friendliness which means the extent of damage exerted on the road by the vehicles, and handling stabilities of a self-dumping truck. Firstly, the full multi-body dynamic vehicle model is developed using software ADAMS/Car and the vehicle model is then validated through ride comfort road tests. The performance criterion for ride comfort evaluation is identified as root mean square (RMS) value of frequency weighted acceleration of cab floor, while the road damage coefficient is used for the evaluation of the road-friendliness of a whole vehicle. The lateral acceleration and roll angle of cab were defined as evaluation indices for handling stability performance.
Technical Paper

Optimization of Vehicle Ride Comfort and Handling Stability Based on TOPSIS Method

A detailed multi-body dynamic model of a passenger car was modeled using ADAMS/Car and then checked by the ride comfort and handling stability test results in this paper. The performance criterion for ride comfort evaluation was defined as the overall weighted acceleration root mean square (RMS) value of car body floor, while the roll angle and lateral acceleration of car body were considered as evaluation indicators for handling stability performance. Simultaneously, spring stiffness and shock absorber damping coefficients of the front and rear suspensions were taken as the design variables (also called factors), which were considered at three levels. On this basis, a L9 orthogonal array was employed to perform the ride and handling simulations.
Technical Paper

Performance Simulation Research on Bus with Air Suspension

Air spring has a variable stiffness characteristic, its vibration frequency is much lower than that of leaf spring and will not vary with load of vehicle. More and more air springs are applied on automobile suspension. A study on the automobile ride comfort, and the controllability and stability about the bus with air suspension is performed in the paper, which is based on multi-body system dynamics.
Journal Article

Physical Modeling of Shock Absorber Using Large Deflection Theory

In this paper, a shock absorber physical model is developed. Firstly, a rebound valve model which is based on its structure parameters is built through using the large deflection theory. The von Karman equations are introduced to discover the physical relationships between the load and the deflection of valve discs. An analytical solution of the von Karman equations is then deducted via perturbation method. Secondly, the flow equations and the pressure equations of the shock absorber operating are investigated. The relationship between fluid flow rate and pressure drop of rebound valve is analyzed based on the analytical solution of valve discs deflection. Thirdly, an inter-iterative process of flow rate and pressure drop is employed in order to adequately consider the influence of fluid flow on damping force. Finally, the physical model is validated by comparing the experimental data with the simulation output.
Journal Article

Prediction of Automotive Ride Performance Using Adaptive Neuro-Fuzzy Inference System and Fuzzy Clustering

Artificial intelligence systems are highly accepted as a technology to offer an alternative way to tackle complex and non-linear problems. They can learn from data, and they are able to handle noisy and incomplete data. Once trained, they can perform prediction and generalization at high speed. The aim of the present study is to propose a novel approach utilizing the adaptive neuro-fuzzy inference system (ANFIS) and the fuzzy clustering method for automotive ride performance estimation. This study investigated the relationship between the automotive ride performance and relative parameters including speed, spring stiffness, damper coefficients, ratios of sprung and unsprung mass. A Takagi-Sugeno fuzzy inference system associated with artificial neuro network was employed. The C-mean fuzzy clustering method was used for grouping the data and identifying membership functions.
Technical Paper

Research on Roll Vibration Characteristics of a Truck's Front Suspension

For the roll vibration problem of a Truck, a 4-DOF roll vibration model of its front suspension system was built. According to dynamics theory, the complex modal vibration modes of the model were all obtained. At the same time, the frequency response functions of frame roll angle acceleration, the relative dynamic load of wheel and the suspension dynamic deflection were respectively presented. Then their characteristics were respectively researched. In the process of characteristic analysis, a new system parameter was proposed, which is the space ratio of the space between suspensions of left and right sides and the wheel track of the front axle (space ratio in short). At last, the influence of system parameters on the vibration transmission property was also reserached, which included the natural frequency of the frame, the damping ratio, the stiffness ratio, the mass ratio, the rotational inertia ratio and the space ratio.
Journal Article

Semi-Active Vibration Control of Landing Gear Using Magneto-Rhelological Dampers

Magneto-rhelological(MR) dampers are devices that use rheological fluids to modify the mechanical properties of fluid absorber. The mechanical simplicity, high dynamic range, large force capacity, lower power requirements, robustness and safe manner of operation have made MR dampers attractive devices for semi-active real-time control in civil, aerospace and automotive applications. Landing gear is one of the most essential components of the aircraft, which plays an extreme important role in preventing the airframe from vibration and excessive impact forces, improving passenger comfortable characteristics and increasing aircraft flight safety. In this paper, the semi-active system used in landing gear damping controller design, simulation, and the vibration test-bed are discussed and researched. The MR dampers employed in landing gear system were designed, manufactured and characterized as available semi-active actuators.