Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Co-Simulation Research of Integrated Electro-Hydraulic Braking System

2016-04-05
2016-01-1647
A program of integrated electro-hydraulic braking system is proposed, and its structural composition and working principle are analyzed. According to the structural and mechanical characteristics of all key components, through some reasonable assumptions and simplifications, a motor, a brake master cylinder, four brake wheel cylinders, solenoid valves and an ESP (Electronic Stability Program) algorithm model is set up and simulations of typical braking conditions are carried out based on the Matlab/Simulink. Finally, after the assembly of each sub-model is complete and combining a vehicle which is set up in CarSim software environment, simulation tests and comprehensive performance analysis of the active safety stability control for a vehicle in double lane change and single lane change situations are carried out respectively. According to the dynamic characteristic curves of system, the effects of different structural and control parameters on braking performance are analyzed.
Technical Paper

Research on Vehicle Stability Control Strategy Based on Integrated-Electro-Hydraulic Brake System

2017-03-28
2017-01-1565
A vehicle dynamics stability control system based on integrated-electro-hydraulic brake (I-EHB) system with hierarchical control architecture and nonlinear control method is designed to improve the vehicle dynamics stability under extreme conditions in this paper. The I-EHB system is a novel brake-by-wire system, and is suitable to the development demands of intelligent vehicle technology and new energy vehicle technology. Four inlet valves and four outlet valves are added to the layout of a conventional four-channel hydraulic control unit. A permanent-magnet synchronous motor (PMSM) provides a stabilized high-pressure source in the master cylinder, and the four-channel hydraulic control unit ensures that the pressures in each wheel cylinder can be modulated separately at a high precision. Besides, the functions of Anti-lock Braking System, Traction Control System and Regenerative Braking System, Autonomous Emergency Braking can be integrated in this brake-by-wire system.
Technical Paper

Traction Control Logic Based on Extended Kalman Filter for Omni-directional Electric Vehicle

2012-04-16
2012-01-0251
Omni-directional electric vehicle built by our research group is an advanced electric vehicle whose four wheels can drive, steer and brake independently. The vehicle chassis system is composed of four in-wheel motors, four independent steer motors and electromagnetic brake system, and its control system is divided into logical control layer and underlying execution layer. The information exchange between these two layers is implemented by CAN bus. In this paper, the traction control logic for Omni-directional electric vehicle is developed. The study mainly involves two aspects: the vehicle states estimation and the traction control logic design. The vehicle states, including vehicle longitudinal velocity, lateral speed, side slip angle and yaw rate, etc, are estimated based on Extended Kalman Estimation and multiple degrees of freedom vehicle model.
X