Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

4WID/4WIS Electric Vehicle Modeling and Simulation of Special Conditions

2011-09-13
2011-01-2158
This paper introduces the characteristics of the 4 wheel independent driving/4 wheel independent steering (4WID/4WIS) electric vehicle (EV). Models of Subsystems and the vehicle are constructed based on Matlab/simulink. The vehicle model allows the inputs of different drive torques and steer angles of four wheels. The dynamic characteristics of drive motors and steer motors are considered, and also it can reflect the vehicle longitudinal dynamics change due to the increase of the mass and inertia of the four wheels. Besides, drive mode selection function that is unique to this type vehicle is involved. Simulations and analyses of crab, oblique driving and zero radius turning which are the special conditions of 4WID/4WIS EV are conducted. The results show that the model can reflect the dynamic response characteristics. The model can be used to the simulation analyses of handling, stability, energy saving and control strategies verification of 4WID/4WIS EVs.
Technical Paper

A Comparison of a Semi-Active Inerter and a Semi-Active Suspension

2010-10-05
2010-01-1903
Inerters have become a hot topic in recent years, especially in vehicle, train, and building suspension systems. The performance of a passive inerter and a semi-active inerter was analyzed and compared with each other and it showed that the semi-active inerter has much better performance than the passive inerter, especially with the Hybrid control method. Eight different layouts of suspensions were analyzed with a quarter car model in this paper. The adaptation of dimensionless parameters was considered for a semi-active suspension and the semi-active inerters. The performance of the semi-active inerter suspensions with different layouts was compared with a semi-active suspension with a conventional parallel spring-damper arrangement. It shows a semi-active suspension, with more simple configuration and lower cost, has similar or better compromise between ride and handling than a semi-active inerter with the Hybrid control.
Technical Paper

A Comprehensive Testing and Evaluation Approach for Autonomous Vehicles

2018-04-03
2018-01-0124
Performance testing and evaluation always plays an important role in the developmental process of a vehicle, which also applies to autonomous vehicles. The complex nature of an autonomous vehicle from architecture to functionality demands even more quality-and-quantity controlled testing and evaluation than ever before. Most of the existing testing methodologies are task-or-scenario based and can only support single or partial functional testing. These approaches may be helpful at the initial stage of autonomous vehicle development. However, as the integrated autonomous system gets mature, these approaches fall short of supporting comprehensive performance evaluation. This paper proposes a novel hierarchical and systematic testing and evaluation approach to bridge the above-mentioned gap.
Technical Paper

A Method for Evaluating the Complexity of Autonomous Driving Road Scenes

2024-04-09
2024-01-1979
An autonomous vehicle is a comprehensive intelligent system that includes environment sensing, vehicle localization, path planning and decision-making control, of which environment sensing technology is a prerequisite for realizing autonomous driving. In the early days, vehicles sensed the surrounding environment through sensors such as cameras, radar, and lidar. With the development of 5G technology and the Vehicle-to-everything (V2X), other information from the roadside can also be received by vehicles. Such as traffic jam ahead, construction road occupation, school area, current traffic density, crowd density, etc. Such information can help the autonomous driving system understand the current driving environment more clearly. Vehicles are no longer limited to areas that can be sensed by sensors. Vehicles with different autonomous driving levels have different adaptability to the environment.
Technical Paper

A Model-Based Mass Estimation and Optimal Braking Force Distribution Algorithm of Tractor and Semi-Trailer Combination

2013-04-08
2013-01-0418
Taking a good longitudinal braking performance on flat and level road of tractor and semi-trailer combination as a target, in order to achieve an ideal braking force distribution among axles, while the vehicle deceleration is just depend on the driver's intention, not affected by the variation of semi-trailer mass, the paper proposes a model based vehicle mass identification and braking force distribution strategy. The strategy identifies the driver's braking intention via braking pedal, estimates semi-trailer's mass during the building process of braking pressure in brake chamber, distributes braking force among axles by using the estimated mass. And a double closed-loop regulation of the vehicle deceleration and utilization adhesion coefficient of each axle is presented, in order to eliminate the bad effect of mass estimation error, and enhance the robustness of the whole algorithm. A simulation is conducted by utilizing MATLAB/Simulink and TruckSim.
Technical Paper

A Nonlinear Slip Ratio Observer Based on ISS Method for Electric Vehicles

2018-04-03
2018-01-0557
Knowledge of the tire slip ratio can greatly improve vehicle longitudinal stability and its dynamic performance. Most conventional slip ratio observers were mainly designed based on input of non-driven wheel speed and estimated vehicle speed. However, they are not applicable for electric vehicles (EVs) with four in-wheel motors. Also conventional methods on speed estimation via integration of accelerometer signals can often lead to large offset by long-time integral calculation. Further, model uncertainties, including steady state error and unmodeled dynamics, are considered as additive disturbances, and may affect the stability of the system with estimated state error. This paper proposes a novel slip ratio observer based on input-to-state stability (ISS) method for electric vehicles with four-wheel independent driving motors.
Journal Article

A Real-Time Curb Detection Method for Vehicle by Using a 3D-LiDAR Sensor

2021-04-06
2021-01-0076
Effectively detecting road boundaries in real time is critical to the applications of autonomous vehicles, such as vehicle localization, path planning and environmental understanding. To precisely extract the road boundaries from the 3D-LiDAR data, a dedicated algorithm consisting of four steps is proposed in this paper. The steps are as follows: Firstly, the 3D-LiDAR data is pre-processed by employing the RANSAC method, the ground points are quickly separated from the original 3D-LiDAR point cloud to reduce the disturbance from the obstacles on the road, this greatly decreases the size of the point cloud to be processed. Secondly, based on the principle of 3D-LiDAR scanning, the ground points are divided into scan layers. And the road boundary points of each scan layer are detected by using three spatial features based on sliding window.
Technical Paper

A Rolling Prediction-Based Multi-Scale Fusion Velocity Prediction Method Considering Road Slope Driving Characteristics

2023-12-20
2023-01-7063
Velocity prediction on hilly road can be applied to the energy-saving predictive control of intelligent vehicles. However, the existing methods do not deeply analyze the difference and diversity of road slope driving characteristics, which affects prediction performance of some prediction method. To further improve the prediction performance on road slope, and different road slope driving features are fully exploited and integrated with the common prediction method. A rolling prediction-based multi-scale fusion prediction considering road slope transition driving characteristics is proposed in this study. Amounts of driving data in hilly sections were collected by the advanced technology and equipment. The Markov chain model was used to construct the velocity and acceleration joint state transition characteristics under each road slope transition pair, which expresses the obvious driving difference characteristics when the road slope changes.
Technical Paper

A Study of LPG Lean Burn for a Small SI Engine

2002-10-21
2002-01-2844
This paper presents a study of LPG lean burn in a motorcycle SI engine. The lean burn limits are compared by several ways. The relations of lean burn limit with the parameters, such as engine speed, compression ratio and advanced spark ignition etc. are tested. The experimental results show that larger throttle opening, lower engine speed, earlier spark ignition timing, larger electrode gap and higher compression ratio will extend the lean burn limit of LPG. The emission of a LPG engine, especially on NOx emission, can be significantly reduced by means of the lean burn technology.
Technical Paper

A Study on Nonlinear Stiffness Characteristic of Air Spring for a Bus

2002-11-18
2002-01-3092
Using the nonlinear finite element analysis, three nonlinear characteristics of the rubber gasbag of the air spring on the bus are thoroughly analyzed, including the nonlinear characteristic of the rubber gasbag with multi layers of composite materials, the nonlinear large displacement geometry characteristic of the rubber gasbag on working, and the nonlinear contact characteristic of the rubber gasbag when contacts the pedestal and the top cover plate. A model is build and the nonlinear characteristic of the air spring on the bus is analyzed using the ABAQUS software. At last, the article discusses parameters that influence on the characteristic of the air spring for the bus.
Technical Paper

A Survey of Vehicle Dynamics Models for Autonomous Driving

2024-04-09
2024-01-2325
Autonomous driving technology is more and more important nowadays, it has been changing the living style of our society. As for autonomous driving planning and control, vehicle dynamics has strong nonlinearity and uncertainty, so vehicle dynamics and control is one of the most challenging parts. At present, many kinds of specific vehicle dynamics models have been proposed, this review attempts to give an overview of the state of the art of vehicle dynamics models for autonomous driving. Firstly, this review starts from the simple geometric model, vehicle kinematics model, dynamic bicycle model, double-track vehicle model and multi degree of freedom (DOF) dynamics model, and discusses the specific use of these classical models for autonomous driving state estimation, trajectory prediction, motion planning, motion control and so on.
Journal Article

Accurate Pressure Control Based on Driver Braking Intention Identification for a Novel Integrated Braking System

2021-04-06
2021-01-0100
With the development of intelligent and electric vehicles, higher requirements are put forward for the active braking and regenerative braking ability of the braking system. The traditional braking system equipped with vacuum booster has difficulty meeting the demand, therefore it has gradually been replaced by the integrated braking system. In this paper, a novel Integrated Braking System (IBS) is presented, which mainly contains a pedal feel simulator, a permanent magnet synchronous motor (PMSM), a series of transmission mechanisms, and the hydraulic control unit. As an integrative system of mechanics-electronics-hydraulics, the IBS has complex nonlinear characteristics, which challenge the accurate pressure control. Furthermore, it is a completely decoupled braking system, the pedal force doesn’t participate in pressure-building, so it is necessary to precisely identify driver’s braking intention.
Technical Paper

Aeroelastic Response and Structural Improvement for Heavy-Duty Truck Cab Deflectors

2019-01-14
2019-01-5004
Numerical simulations on the fluid-structure interaction were conducted using commercial software STAR-CCM+ and ABAQUS. The aeroelastic responses of a deflector under several different working conditions were simulated utilizing finite volume and finite element methods to investigate the aeroelastic problem of automotive deflectors. Results showed that the structural response of a top deflector is minimal under the influence of aerodynamics given its large structural stiffness. The size of the top deflector was optimised by using thickness as a variable. The volume and quality of the top deflector were significantly reduced, and its lightweight performance was improved to satisfy the stiffness performance requirement. The vibration of a side deflector structure was mainly induced by the turbulence on the structure surface. The amplitude of vibration was small and the vibration gradually converged in a few seconds without obvious regularity.
Technical Paper

Analysis of Illumination Condition Effect on Vehicle Detection in Photo-Realistic Virtual World

2017-09-23
2017-01-1998
Intelligent driving, aimed for collision avoidance and self-navigation, is mainly based on environmental sensing via radar, lidar and/or camera. While each of the sensors has its own unique pros and cons, camera is especially good at object detection, recognition and tracking. However, unpredictable environmental illumination can potentially cause misdetection or false detection. To investigate the influence of illumination conditions on detection algorithms, we reproduced various illumination intensities in a photo-realistic virtual world, which leverages recent progress in computer graphics, and verified vehicle detection effect there. In the virtual world, the environmental illumination is controlled precisely from low to high to simulate different illumination conditions in the driving scenarios (with relative luminous intensity from 0.01 to 400). Sedan cars with different colors are modelled in the virtual world and used for detection task.
Technical Paper

Application Study of Solar Energy and Heat Management System Utilizing Phase Change Materials in Parking Facilities

2024-04-09
2024-01-2451
Ambient temperature is a very sensitive use condition for electric vehicles (EVs), so it is imperative to ensure the maintenance of suitable temperature. This is particularly important in regions characterized by prolonged exposure to unfavorable temperature conditions. In such cases, it becomes necessary to implement insulation measures within parking facilities and allocate energy resources to sustain a desired temperature level. Solar energy is a renewable and environmentally friendly source of energy that is widely available. However, the effectiveness of utilizing solar energy is influenced by various factors, such as the time of day and weather conditions. The use of phase change material (PCM) in a latent heat energy storage (LHES) system has gained significant attention in this field. In contrast to single-phase energy storage materials, PCM offer a more effective heat storage capacity.
Technical Paper

Automatic Drive Train Management System for 4WD Vehicle Based on Road Situation Identification

2018-04-03
2018-01-0987
The slip ratio of vehicle driving wheels is easily beyond a reasonable range in the complex and changeable driving conditions. In order to achieve the adaptive acceleration slip regulation of four-wheel driving (4WD) vehicle, a fuzzy control strategy of Automatic Drive Train Management (ADM) system based on road situation identification was proposed in this paper. Firstly, the influence on the control strategy of ADM system was analyzed from two aspects, which included the different road adhesion coefficients and the vehicle’s ramp driving state. In the meantime several quantitative expressions of relevant control parameters were derived. Secondly, the fuzzy logic control algorithm was adopted to design a road situation identification subsystem and a ramp driving state identification subsystem respectively. The former was based on the μ-S curve model, and the latter was based on the vehicle driving equilibrium equation.
Technical Paper

Auxiliary Drive Control Strategy of Hydraulic Hub-Motor Auxiliary System for Heavy Truck

2016-09-27
2016-01-8113
To improve traditional heavy commercial vehicles performance, this paper introduces a novel hydraulic hub-motor auxiliary system, which could achieve auxiliary driving and auxiliary braking function. Firstly, the system configuration and operation modes are described. In order to achieve coordinating control and distribution of the engine power between mechanical and hydraulic paths, the paper proposes an optimal algorithm based on enhance of vehicle slip efficiency and the results show that displacement of hydraulic variable pump relates with the transmission gear ratio. And then the hydraulic pump displacement controller is designed, in which the feedforward and feedback strategy is adopted. Considering the characteristics of hydraulic hub-motor auxiliary system, a layered auxiliary drive control strategy is proposed in the paper, which includes signal layers, core control layers and executive layers.
Technical Paper

Balanced Suspension Thrust Rod Fatigue Life Prediction

2016-09-27
2016-01-8044
In order to predict the fatigue life of thrust rod heavy duty commercial vehicle balanced suspension, based on the continuum mechanics theory, the fatigue life prediction model of rubber with equivalent effect as damage parameter is established. Based on the equivalent stress and fatigue cumulative damage theory, the fatigue damage evolution equation of rubber material expressed by stress is derived by using the strain energy function. The general fatigue life model is established by using the maximum logarithmic principal strain as the damage parameter. The finite element model of the thrust rod is established, and the stress distribution of the spherical hinge rubber layer and the easy damage area are analyzed. Based on the equivalent stress calculation results and the axial tension stress and strain data of the rubber material, the accuracy of the results of the finite element calculation is verified.
Technical Paper

Biosignal-Based Driving Experience Analysis between Automated Mode and Manual Mode

2024-04-09
2024-01-2504
With the rapid development of intelligent driving technology, there has been a growing interest in the driving comfort of automated vehicles. As vehicles become more automated, the role of the driver shifts from actively engaging in driving tasks to that of a passenger. Consequently, the study of the passenger experience in automated driving vehicles has emerged as a significant research area. In order to examine the impact of automatic driving on passengers' riding experience in vehicle platooning scenarios, this study conducted real vehicle experiments involving six participants. The study assessed the subjective perception scores, eye movement, and electrocardiogram (ECG) signals of passengers seated in the front passenger seat under various vehicle speeds, distances, and driving modes. The results of the statistical analysis indicate that vehicle speed has the most substantial influence on passenger perception.
Technical Paper

CATARC New Type Drivetrain NVH Test Facility

2019-04-02
2019-01-0788
A vehicle’s NVH performance has a significant impact on the user experience of the driver and passengers. About one-third of the vehicle complaints are related to NVH performance. As the core component of the vehicle, the drivetrain’s NVH characteristics have a significant impact on vehicle comfort. How to reliably and stably reproduce the specific condition of the whole vehicle through the test method, and obtain the highly consistent objective data for analyzing and improving the NVH characteristics of the drivetrain is of great significance in engineering. For this purpose, China Automotive Technology Research Center Co., Ltd. (CATARC) designed and built a new type drivetrain NVH test facility, which consists of five dynamometers, and can carry horizontal/vertical, front/rear drive or four-wheel drive structures including powertrain, transmission, and rear axle, or even a whole vehicle.
X