Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Agglomeration and Nucleation of Non-Volatile Particles in a Particle Grouping Exhaust Pipe of a Euro VI Heavy-Duty Diesel Engine

2019-01-15
2019-01-0044
The possibility of non-volatile particle agglomeration in engine exhaust was experimentally examined in a Euro VI heavy duty engine using a variable cross section agglomeration pipe, insulated and double walled for minimal thermophoresis. The agglomeration pipe was located between the turbocharger and the exhaust treatment devices. Sampling was made across the pipe and along the centre-line of the agglomeration pipe. The performance of the agglomeration pipe was compared with an equivalent insulated straight pipe. The non-volatile total particle number and size distribution were investigated. Particle number measurements were conducted according to the guidelines from the Particle Measurement Programme. The Engine was fuelled with commercially available low sulphur S10 diesel.
Technical Paper

An Investigation of the Degradation of Biodiesel Blends in a Heavy-Duty Diesel Engine

2022-03-29
2022-01-0512
One way to reduce carbon dioxide emissions from the current heavy-duty vehicles fleet is to replace fossil fuel with renewable fuel. This can be done by blending so-called drop-in fuels into the standard diesel fuel. However, problems such as insoluble impurities may arise when the fuels are mixed. These precipitates, known as soft particles, can cause deposits in the fuel system, e.g., injectors and fuel filters, reducing the engine´s performance. The most used drop-in fuel today is biodiesel which, is blended with different concentrations. To better understand how soft particles are formed in the vehicle´s fuel system, the degradation of biodiesel blends in the engine has been investigated. This study explores biodiesel blends´ degradation process by comparing the incoming fuel with the return fuel from a modern diesel engine to investigate how the fuel is affected by this process. The engine was run using different blends of biodiesel fuel.
Technical Paper

CFD-Driven Preliminary Investigation of Ethanol-Diesel Diffusive Combustion in Heavy-Duty Engines

2019-12-19
2019-01-2192
The introduction of renewable alcohols as fuels for heavy-duty engines may play a relevant role for the reduction of the carbon footprint of the transport sector. The direct injection of ethanol as main fuel and diesel as pilot fuel in the engine combustion chamber through two separate injectors may allow good combustion controllability over the entire engine operating range by targeting diffusive combustion. Closed-cycle combustion simulations have been carried out using AVL FIRE coupled to AVL TABKIN for the implementation of the Flamelet Generated Manifold (FGM) chemistry reduction technique in order to investigate the influence of the injection system geometry and the injection strategy of pure ethanol and diesel fuel on ignition characteristics and combustion at different operating conditions.
Technical Paper

Challenges for Spark Ignition Engines in Heavy Duty Application: a Review

2018-04-03
2018-01-0907
Spark Ignition (SI) engines operating on stoichiometric mixtures can employ a simple three-way catalyst as after-treatment to achieve low tailpipe emissions unlike diesel engines. This makes heavy duty (HD) SI engines an attractive proposition for low capital cost and potentially low noise engines, if the power density and efficiency requirement could be met. Specific torque at low speeds is limited in SI engines due to knock. In HD engines, the higher flame travel distances associated with higher bore diameters exacerbates knock due to increased residence time of the end gas. This report reviews the challenges in developing HD SI engines to meet current diesel power density. It also focuses on methods to mitigate them in order to achieve high thermal efficiency while running on stoichiometric condition. High octane renewable fuels are seen as a key enabler to achieve the performance level required in such applications.
Technical Paper

Combustion Characteristics, Performance and NOx Emissions of a Heavy-Duty Ethanol-Diesel Direct Injection Engine

2020-09-15
2020-01-2077
Diffusive combustion of direct injected ethanol is investigated in a heavy-duty single cylinder engine for a broad range of operating conditions. Ethanol has a high potential as fossil fuel alternative, as it provides a better carbon footprint and has more sustainable production pathways. The introduction of ethanol as fuel for heavy-duty compression-ignition engines can contribute to decarbonize the transport sector within a short time frame. Given the resistance to autoignition of ethanol, the engine is equipped with two injectors mounted in the same combustion chamber, allowing the simultaneous and independent actuation of the main injection of pure ethanol and a pilot injection of diesel as an ignition source. The influence of the dual-fuel injection strategy on ethanol ignition, combustion characteristics, engine performance and NOx emissions is evaluated by varying the start of injection of both fuels and the ethanol-diesel ratio.
Technical Paper

Designing Thermoacoustic Engines for Automotive Exhaust Waste Heat Recovery

2021-04-06
2021-01-0209
Thermoacoustic engine has been proven to be a promising technology for automotive exhaust waste heat recovery to save fossil fuel and reduce emission thanks to its ability to convert heat into acoustic energy which, hence, can be harvested in useful electrical energy. In this paper, based on the practical thermodynamic parameters of the automotive exhaust gas, including mass flow rate and temperature, two traveling-wave thermoacoustic engines are designed and optimized for the typical heavy-duty and light-duty vehicles, respectively, to extract and reutilize their exhaust waste heat. Firstly, nonlinear thermoacoustic models for each component of a thermoacoustic engine are established in the frequency domain, by which any potential steady operating point of the engine is available.
Journal Article

Heat Loss Analysis of a Steel Piston and a YSZ Coated Piston in a Heavy-Duty Diesel Engine Using Phosphor Thermometry Measurements

2017-03-28
2017-01-1046
Diesel engine manufacturers strive towards further efficiency improvements. Thus, reducing in-cylinder heat losses is becoming increasingly important. Understanding how location, thermal insulation, and engine operating conditions affect the heat transfer to the combustion chamber walls is fundamental for the future reduction of in-cylinder heat losses. This study investigates the effect of a 1mm-thick plasma-sprayed yttria-stabilized zirconia (YSZ) coating on a piston. Such a coated piston and a similar steel piston are compared to each other based on experimental data for the heat release, the heat transfer rate to the oil in the piston cooling gallery, the local instantaneous surface temperature, and the local instantaneous surface heat flux. The surface temperature was measured for different crank angle positions using phosphor thermometry.
Technical Paper

Heavy-Duty Engine Intake Manifold Pressure Virtual Sensor

2019-04-02
2019-01-1170
Increasing demands for more efficient engines and stricter legislations on exhaust emissions require more accurate control of the engine operating parameters. Engine control is based on sensors monitoring the condition of the engine. Numerous sensors, in a complex control context, increase the complexity, the fragility and the cost of the system. An alternative to physical sensors are virtual sensors, observers used to monitor parameters of the engine thus reducing both the fragility and the production cost but with a slight increase of the complexity. In the current paper a virtual intake manifold cylinder port pressure sensor is presented. The virtual sensor is based on a compressible flow model and on the pressure signal of the intake manifold pressure sensor. It uses the linearized pressure coefficient approach to keep vital performance behaviors while still conserving calibration effort and embedded system memory.
Technical Paper

Mechanism for Internal Injector Deposits Formation in Heavy-duty Engines using Drop-in Fuels

2023-09-29
2023-32-0053
Heavy-duty transportation is one of the sectors that contributes to greenhouse gas emissions. One way to reduce CO2 emissions is to use drop-in fuels. However, when drop-in fuels are used, i.e., higher blends of alternative fuels are added to conventional fuels, solubility problems and precipitation in the fuel can occur. As a result, insolubles in the fuel can clog the fuel filters and interfere with the proper functioning of the injectors. This adversely affects engine performance and increases fuel consumption. These problems are expected to increase with the development of more advanced fuel systems to meet upcoming environmental regulations. This work investigates the composition of the deposits formed inside the injectors of the heavy-duty diesel engine and discusses their formation mechanism. Injectors with internal deposits were collected from field trucks throughout Europe. Similar content, location and structure were found for all the deposits in the studied injectors.
Technical Paper

Numerical Investigation of Increasing Turbulence through Piston Geometries on Knock Reduction in Heavy Duty Spark Ignition Engines

2019-12-19
2019-01-2302
Knock in heavy duty (HD) spark ignition (SI) engines is exacerbated by a large bore diameter and a higher flame travel distance. An increase in turbulence close to TDC can improve combustion speed and reduce knock through low residence time for end gas auto-ignition. Since HD SI engines are usually derived from diesel engines, it is common to have a swirl motion that does not dissipate into turbulence. To increase flame speed and limit knock, squish can be used to produce turbulence close to TDC. In this study, two different piston bowl geometries are examined: the re-entrant and quartette. The influence of squish area on turbulence production by these piston geometries were investigated using motored simulations in AVL FIRE. The effect of increased turbulence on knock reduction was analyzed using a calibrated 1D GT-Power model of a HD SI engine and the performance improvement was estimated.
Journal Article

On the Effects of Turbocharger on Particle Number and Size Distribution in a Heavy - Duty Diesel Engine

2020-09-27
2020-24-0007
Particles emitted from internal combustion engines have adverse health effects and the severity varies based on the particle size. A diesel particulate filter (DPF) in the after-treatment systems is employed to control the particle emissions from combustion engines. The design of a DPF depends on the nature of particle size distribution at the upstream and is important to evaluate. In heavy-duty diesel engines, the turbocharger turbine is an important component affecting the flow and particles. The turbine wheel and housing influence particle number and size. This could potentially be used to reduce particle number or change the distribution to become more favourable for filtration. This work evaluates the effect of a heavy-duty diesel engine’s turbine on particle number and size distribution.
Technical Paper

On the Effects of Urea and Water Injection on Particles across the SCR Catalyst in a Heavy - Duty Euro VI Diesel Engine

2020-09-15
2020-01-2196
Particle emissions from heavy-duty engines are regulated both by mass and number by Euro VI regulation. Understanding the evolution of particle size and number from the exhaust valve to the tail pipe is of vital importance to expand the possibilities of particle reduction. In this study, experiments were carried out on a heavy-duty Euro VI engine after-treatment system consisting of diesel oxidation catalyst, diesel particulate filter and selective catalytic reduction (SCR) unit with AdBlue injection followed by ammonia slip catalyst. The present work focusses on the SCR unit with regard to total particle number with and without nucleation particles both. Experiments were conducted by varying the AdBlue injection quantity, SCR inlet temperature [to vary the reaction temperature], exhaust mass flow rate [to vary the residence time in SCR], and fuel injection pressures [to vary inlet particle number and inlet NOx].
Technical Paper

Pressure Amplitude Influence on Pulsating Exhaust Flow Energy Utilization

2018-04-03
2018-01-0972
A turbocharged Diesel engine for heavy-duty on-road vehicle applications employs a compact exhaust manifold to satisfy transient torque and packaging requirements. The small exhaust manifold volume increases the unsteadiness of the flow to the turbine. The turbine therefore operates over a wider flow range, which is not optimal as radial turbines have narrow peak efficiency zone. This lower efficiency is compensated to some extent by the higher energy content of the unsteady exhaust flow compared to steady flow conditions. This paper experimentally investigates the relationship between exhaust energy utilization and available energy at the turbine inlet at different degrees of unsteady flow. A special exhaust manifold has been constructed which enables the internal volume of the manifold to be increased. The larger volume reduces the exhaust pulse amplitude and brings the operating condition for the turbine closer to steady-flow.
Technical Paper

Reactivity of Diesel Soot from 6- and 8-Cylinder Heavy-Duty Engines

2023-08-28
2023-24-0119
Increasing concern for air pollution together with the introduction of new types of fuels pose new challenges to the exhaust aftertreatment system for heavy-duty (HD) vehicles. For diesel-powered engines, emissions of particulate matter (PM) is one of the main drawbacks due to its effect on health. To mitigate the tailpipe emissions of PM, heavy-duty vehicles are since Euro V equipped with a diesel particulate filter (DPF). The accumulation of particles causes flow restriction resulting in fuel penalties and decreased vehicle performance. Understanding the properties of PM produced during engine operation is important for the development and optimized control of the DPF. This study has focused on assessing the reactivity of the PM by measuring the oxidation kinetics of the carbonaceous fraction. PM was sampled from two different heavy-duty engines during various test cycles.
Technical Paper

Theoretical Assessment of Rigs for Accelerated Ash Accumulation in Diesel Particulate Filters

2020-09-15
2020-01-2175
Renewable fuels from different feedstocks can enable sustainable transport solutions with significant reduction in greenhouse gas emissions compared to conventional petroleum-derived fuels. Nevertheless, the use of biofuels in diesel engines will still require similar exhaust gas cleaning systems as for conventional diesel. Hence, the use of diesel particulate filters (DPF) will persist as a much needed part of the vehicle’s aftertreatment system. Combustion of renewable fuels can potentially yield soot and ash with different properties as well as larger amounts of ash compared to conventional fossil fuels. The faster ash build-up and altered ash deposition pattern lead to an increase in pressure drop over the DPF, increase the fuel consumption and call for premature DPF maintenance or replacement. Prolonging the maintenance interval of the DPF for heavy-duty trucks, having a demand for high up-time, is highly desirable.
X