Refine Your Search

Topic

Author

Search Results

Technical Paper

A Characteristic Parameter to Estimate the Optimum Counterweight Mass of a 4-Cylinder In-Line Engine

2002-03-04
2002-01-0486
A dimensionless relationship that estimates the maximum bearing load of a 4-cylinder 4-stroke in-line engine has been found. This relationship may assist the design engineer in choosing a desired counterweight mass. It has been demonstrated that: 1) the average bearing load increases with engine speed and 2) the maximum bearing load initially decreases with engine speed, reaches a minimum, then increases quickly with engine speed. This minimum refers to a transition speed at which the contribution of the inertia force overcomes the contribution of the maximum pressure force to the maximum bearing load. The transition speed increases with an increase of counterweight mass and is a function of maximum cylinder pressure and the operating parameters of the engine.
Technical Paper

A Forward Collision Warning System Using Deep Reinforcement Learning

2020-04-14
2020-01-0138
Forward collision warning is one of the most challenging concerns in the safety of autonomous vehicles. A cooperation between many sensors such as LIDAR, Radar and camera helps to enhance the safety. Apart from the importance of having a reliable object detector, the safety system should have requisite capabilities to make reasonable decisions in the moment. In this work, we concentrate on detecting front vehicles of autonomous cars using a monocular camera, beyond only a detection method. In fact, we devise a solution based on a cooperation between a deep object detector and a reinforcement learning method to provide forward collision warning signals. The proposed method models the relation between acceleration, distance and collision point using the area of the bounding box related to the front vehicle. An agent of learning automata as a reinforcement learning method interacts with the environment to learn how to behave in eclectic hazardous situations.
Technical Paper

A Methodology for Measurement and Analysis of Head-To- B-Pillar Contact Pressure and Area Response

2001-03-05
2001-01-0718
Government accident statistics show that approximately 35% of all car accident victims suffer an injury to the head and face. Such injuries are common during frontal, side, and rollover accidents as the head may impact the steering wheel, side pillars, windshield, or roof. Further, non-threatening injuries (i.e abrasions) may be suffered due to contact with the deployed airbag, or, in the case of an out-of-position occupant, a deploying airbag. While the forces and accelerations measured internal to the head are known to correlate with serious head injury (i.e. concussion, skull fracture, diffuse axonal injury), it is currently not possible to record how the loads are distributed over the head and face with the current ATD. Ultimately, such data could eventually be used to provide improved resolution as to the probability of superficial, soft tissue damage since past cadaver studies show that the distribution of contact pressures are related to such injuries.
Journal Article

A New Approach for Very Low Particulate Mass Emissions Measurement

2013-04-08
2013-01-1557
Pending reductions in light duty vehicle PM emissions standards from 10 to 3 mg/mi and below will push the limits of the gravimetric measurement method. At these levels the PM mass collected approaches the mass of non-particle gaseous species that adsorb onto the filter from exhaust and ambient air. This introduces an intrinsic lower limit to filter based measurement that is independent of improvements achieved in weighing metrology. The statistical variability of back-up filter measurements at these levels makes them an ineffective means for correcting the adsorption artifact. The proposed subtraction of a facility based estimate of the artifact will partially alleviate the mass bias from adsorption, but its impact on weighing variability remains a problem that can reach a significant fraction of the upcoming 3 and future 1 mg/mi standards. This paper proposes an improved PM mass method that combines the gravimetric filter approach with real time aerosol measurement.
Technical Paper

A Robust Failure Proof Driver Drowsiness Detection System Estimating Blink and Yawn

2020-04-14
2020-01-1030
The fatal automobile accidents can be attributed to fatigued and distracted driving by drivers. Driver Monitoring Systems alert the distracted drivers by raising alarms. Most of the image based driver drowsiness detection systems face the challenge of failure proof performance in real time applications. Failure in face detection and other important part (eyes, nose and mouth) detections in real time cause the system to skip detections of blinking and yawning in few frames. In this paper, a real time robust and failure proof driver drowsiness detection system is proposed. The proposed system deploys a set of detection systems to detect face, blinking and yawning sequentially. A robust Multi-Task Convolutional Neural Network (MTCNN) with the capability of face alignment is used for face detection. This system attained 97% recall in the real time driving dataset collected. The detected face is passed on to ensemble of regression trees to detect the 68 facial landmarks.
Technical Paper

An Analysis of the Vehicle Dynamics Behind Pure Pursuit and Stanley Controllers

2023-04-11
2023-01-0901
As automated driving becomes more common, simulation of vehicle dynamics and control scenarios are increasingly important for investigating motion control approaches. In this work, a study of the differences between the Pure Pursuit and Stanley autonomous vehicle controllers, based on vehicle dynamics responses, is presented. Both are geometric controllers that use only immediate vehicle states, along with waypoint data, to control a vehicle’s future direction as it proceeds from point to point, and both are among the most popular lateral controllers in use today. The MATLAB Automated Driving Toolbox is employed to implement and virtually test the Pure Pursuit and Stanley lateral controllers in different driving scenarios. These include low intensity scenarios such as city driving, and emergency maneuvers such as the moose test.
Technical Paper

An Architecture for a Safety-Critical Steer-by-Wire System

2004-03-08
2004-01-0714
A hardware and software architecture suitable for a safety-critical steer-by-wire systems is presented. The architecture supports three major failure modes and features several safety protocols and mechanisms. Failures due to component failures, software errors, and human errors are handled by the architecture and safety protocols. A test implementation using replicated communication channels, controllers, sensors, and actuators has been performed. The test implementation uses the CAN protocol, Motorola S12 microcontrollers, and Microchip MCP250XX components with a steering wheel and road wheel simulator. The focus of the paper is on the application level, using system engineering principles which incorporate a holistic approach to achieve safety at various levels.
Technical Paper

Analysis of a 4-DOF Vehicle Model Using Bond Graph and Lagrangian Technique

2002-03-04
2002-01-0809
Bond graph modeling is a powerful technique to study the complex interactions occurring between various components in a system. A few investigations were carried out to study vehicle dynamics using Bondgraphs, but are limited to 2 degree of freedom systems [1,2&3]. In this work, a 4-DOF-vehicle model was developed using bond graphs. A frequency response analysis was also carried out to study the natural frequencies. This model was later validated using Lagrangian principles. The results correlated well for a typical passenger car using the manufacturer supplied information available in the public domain.
Technical Paper

Analysis of a Frontal Impact of a Formula SAE Vehicle

2006-12-05
2006-01-3627
The objective of this study was to determine risk of injury to the driver during a frontal impact in a Formula SAE vehicle. Formula SAE is a collegiate student design competition where every year universities worldwide build and compete with open-wheel formula-style race cars. Formula SAE 2006 rules stipulate the use of an impact attenuator to absorb energy in the event of a frontal impact. These rules mandated an average deceleration not to exceed 20-g from a speed of 7.0 m/s (23 ft/s), but do not specify a specific time or pulse shape of the deceleration. The pulse shapes tested in this study included an early high-g, constant-g, and late high-g pulse. The tests were performed using the deceleration sled at the Kettering University Crash Safety Center. Using industry standard practices, this study examined the driver's risk of injury with regard to neck and femur loads, head and chest accelerations, as well as kinematic analysis using high speed video.
Technical Paper

Blind-Spot Detection and Avoidance Utilizing In-Vehicle Haptic Feedback Force Feedback

2011-04-12
2011-01-0556
Steer-by-wire is a system where there are no mechanical connections between the steering wheel and the tires. With the inception of electric and hybrid cars, steer-by-wire is becoming more common. A steer-by-wire car opens many opportunities for additional feedback on the steering wheel. Providing haptic feedback through the steering wheel will add additional depth and capabilities to make the driving experience safer. In this paper we investigated the effects of force feedback on the steering wheel in order to detect and/or avoid blind spot collisions. Two types of force feedback are examined using a driving simulator: a rumble and a counter steering force. A rumble on the steering wheel can avoid blind-spot accidents by providing feedback to drivers about vehicles in their blind spots. Providing counter steering force feedback can help in the reduction in blind-spot accidents. The results show that adding counter steering force feedback did reduce blind-spot related collisions.
Technical Paper

Cervical Range of Motion Data in Children

2006-04-03
2006-01-1140
The “Range-of Motion of the Cervical Spine of Children” study is a collaboration between Kettering University and McLaren Regional Medical Center in Flint, Michigan to quantify and establish benchmarks of “normal” range of motion (ROM) in children. The results will be analyzed to determine mean and standard deviation of degrees of rotation and used to improve the occupant protection in motor vehicles, sports equipment and benefits of physical therapy. The data will be invaluable in the development of computational models to analyze processes involving children in motion.
Technical Paper

Cradle to Grave Comparison on Emission Produced by EV and ICE Powertrains

2024-04-09
2024-01-2402
Since the popularization of the Electric Vehicle (EV) there has been a large movement of consumers, governments, and the automotive industry due to its environmentally friendly characteristics. Unlike an IC engine, the batteries use multitudes of rare earth minerals and complex manufacturing processes which in some cases have been shown to produce as many emissions as an ICE vehicle over its entire lifespan. Another unnoticed important environmental concern has been the final recycling and disposal of the power train after its use. Unlike an ICE engine, which can be melted down or re-used, recycling batteries are much more difficult. In most cases the recycling process and the byproducts produced can be very harmful to the environment. This paper aims to be a complete cradle-to-grave analysis of all emissions produced in the life of an EV battery.
Technical Paper

Data-Driven Modeling of Linear and Nonlinear Dynamic Systems for Noise and Vibration Applications

2023-05-08
2023-01-1078
Data-driven modeling can help improve understanding of the governing equations for systems that are challenging to model. In the current work, the Sparse Identification of Nonlinear Dynamical systems (SINDy) is used to predict the dynamic behavior of dynamic problems for NVH applications. To show the merit of the approach, the paper demonstrates how the equations of motions for linear and nonlinear multi-degree of freedom systems can be obtained. First, the SINDy method is utilized to capture the dynamic behavior of linear systems. Second, the accuracy of the SINDy algorithm is investigated with nonlinear dynamic systems. SINDy can output differential equations that correspond to the data. This method can be used to find equations for dynamical systems that have not yet been discovered or to study current systems to compare with our current understanding of the dynamical system.
Technical Paper

Design and Analysis of Kettering University’s New Proving Ground, the GM Mobility Research Center

2020-04-14
2020-01-0213
Rapid changes in the automotive industry, including the growth of advanced vehicle controls and autonomy, are driving the need for more dedicated proving ground spaces where these systems can be developed safely. To address this need, Kettering University has created the GM Mobility Research Center, a 21-acre proving ground located in Flint, Michigan at the former “Chevy in the Hole” factory location. Construction of a proving ground on this site represents a beneficial redevelopment of an industrial brownfield, as well as a significant expansion of the test facilities available at the campus of Kettering University. Test facilities on the site include a road course and a test pad, along with a building that has garage space, a conference room, and an indoor observation platform. All of these facilities are available to the students and faculty of Kettering University, along with their industrial partners, for the purpose of engaging in advanced transportation research and education.
Technical Paper

Design and Development of a Cylindrical HVAC Case

2004-03-08
2004-01-1385
There are many opportunities in a current automotive HVAC case for improved performance, and cost savings. Based on these opportunities, a new HVAC case design has been developed. This new design is smaller and lighter than current cases while meeting many of the performance requirements. The case also features a unique plenum design for air distribution to the three modes, panel, floor, and defrost. The results of simulation and laboratory testing confirmed the concept of the new HVAC design.
Journal Article

Design and Optimization of a 98%-Efficiency On-Board Level-2 Battery Charger Using E-Mode GaN HEMTs for Electric Vehicles

2016-04-05
2016-01-1219
Most of the present EV on-board chargers utilize a three-stage design, e.g., AC/DC rectifier, DC to high-frequency AC inverter, and AC to DC rectifier, which limits the wall-to-battery efficiency to ∼94%. To further increase the efficiency and power density, a matrix converter is an excellent candidate directly converting grid AC to high-frequency AC thereby saves one stage. However, its control complexity and the high cost of building the back-to-back switches are barriers its acceptance. Instead, this paper adopts the 650V E-mode GaN HEMTs to build a level-2 on-board charger using the indirect matrix topology. The input voltage is 80∼260VAC, the battery voltage is 200∼500VDC and the rated power is 7.2kW. Variable switching frequency is combined with phase-shift control to realize the zero-voltage switching. To further increase the system efficiency, four GaN HEMTs are paralleled to form one switching module with a novel gate-drive technology.
Technical Paper

Designing Axial Flow Fan for Flow and Noise

1999-09-14
1999-01-2817
A comprehensive finite element methodology is developed to predict the compressible flow performance of a non-symmetric 7-blade axial flow fan, and to quantify the source strength and sound pressure levels at any location in the system. The acoustic and flow performances of the fan are predicted simultaneously using a computational aero-acoustic technique combining transient flow analysis and noise propagation. The calculated sound power levels compare favorably with the measured sound power data per AMCA 300-96 code.
Technical Paper

Effect of Chassis Design Factors (CDF) on the Ride Quality Using a Seven Degree of Freedom Vehicle Model

2004-03-08
2004-01-1555
The kinematics and kinetics of a seven degree of freedom vehicle ride model with independent front and rear suspension are developed. Lagrange's equation is used to obtain the mathematical model of the vehicle. The equations of motion are transformed to state space equations in Linear Time Invariant (LTI) form. The effect of Chassis Design Factors (CDF) such as stabilizer bars, stiffness', Dynamic Index in Pitch (DIP) and mass ratio on the vehicle ride quality are investigated. The ride quality of the 3 dimensional vehicle that includes bounce, pitch, roll and unsprung masses motion is demonstrated in time domain response. The vehicle is considered as a Multi-Input-Multi-Output System (MIMO) subjected to deterministic ground inputs. Outputs of interest for the ride quality investigation are vertical and angular displacement and vertical accelerations. Numerical computer simulation analysis is performed using MATLAB® software.
Technical Paper

Effects of Boundary Conditions and Inflation Pressure on the Natural Frequencies and 3D Mode Shapes of a Tire

2017-06-05
2017-01-1905
Tires are one of the major sources of noise and vibration in vehicles. The vibration characteristic of a tire depends on its resonant frequencies and mode shapes. Hence, it is desirable to study how different parameters affect the characteristics of tires. In the current paper, experimental modal tests are performed on a tire in free-free and fixed conditions. To obtain the mode shapes and the natural frequencies, the tire is excited using a mechanical shaker and the response of the tire to the excitation is measured using three roving tri-axial accelerometers. The mode shapes and resonant frequencies of the tire are extracted using LMS PolyMax modal analysis. The obtained mode shapes in the two configurations are compared using Modal Assurance Criterion (MAC) to show how mode shapes of tires change when the tire is moved from a free-free configuration to a fixed configuration. It is shown that some modes of the tire are more sensitive to boundary conditions.
Technical Paper

Evaluations of Combustion Parameters Using Engine Speed Fluctuation Measurements

2005-05-16
2005-01-2533
The combustion process in an IC engine is of significant importance for its noise and vibration characteristics in the vehicle. Describing the combustion process with thermodynamic metrics typically demands extensive instrumentation of the engine to obtain the cylinder pressure from the combustion chamber. This time consuming task often requires, that the engine be removed from the vehicle, instrumented with pressure transducers, and then either reinstalled in the vehicle and tested or installed in a test cell and evaluated. This paper describes a new relatively simple approach towards examining important combustion parameters. The technique is based on statistical analysis of the crankshaft's speed fluctuation. This approach requires relatively simple instrumentation of the engine and is therefore more applicable for vehicle level investigations.
X