Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Development of Clean Snowmobile Technology for Operation on High-Blend Ethanol for the 2008 Clean Snowmobile Challenge

2008-09-09
2008-32-0053
Clean snowmobile technology has been developed using methods which can be applied in the real world with a minimal increase in cost. Specifically, a commercially available snowmobile using a two cylinder, four-stroke engine has been modified to run on high-blend ethanol (E-85) fuel. Additionally, a new exhaust system which features customized catalytic converters and mufflers to minimize engine noise and exhaust emissions has developed. Finally, a number of additional improvements have been made to the track to reduce friction and diminish noise. The results of these efforts include emissions reductions of 94% when compared with snowmobiles operating at the 2012 U.S. Federal requirements.
Technical Paper

Development of Clean Snowmobile Technology for the 2006 SAE Clean Snowmobile Challenge

2006-11-13
2006-32-0051
Kettering University's entry for the 2006 Clean Snowmobile challenge utilizes a Polaris FST Switchback. This snowmobile having a two cylinder, four-stroke engine has been modified to run on ethanol (E-85). The student team has designed and built a new exhaust system which features customized catalytic converters to minimize engine out emissions. A number of improvements have been made to the track to reduce friction and diminish noise.
Technical Paper

Development of Snowmobile Technology for Operation on High-Blend Ethanol

2007-10-30
2007-32-0114
Kettering University has developed a cleaner and quieter snowmobile using technologies and innovative methods which can be applied in the real world with a minimal increase in cost. Specifically, a commercially available snowmobile using a two cylinder, four-stroke engine has been modified to run on high-blend ethanol (E-85) fuel. Further, a new exhaust system which features customized catalytic converters and mufflers to minimize engine noise and exhaust emissions has developed. A number of additional improvements have been made to the track to reduce friction and diminish noise. This paper provides details of the snowmobile development the results of these efforts on performance and emissions. Specifically, the Kettering University snowmobile achieved reductions of approximately 72% in CO, and 98% in HC+NOx when compared with the 2012 standard. Further, the snowmobile achieved a drive by noise level of 73 dbA while operating on hard packed snow.
Technical Paper

Development of the Kettering University Snowmobile for the 2009 SAE Clean Snowmobile Challenge

2009-11-03
2009-32-0177
Affordable clean snowmobile technology has been developed. The goals of this design included reducing exhaust emissions to levels which are below the U.S Environmental Protection Agency (EPA) 2012 standard. Additionally, noise levels were to be reduced to below the noise mandates of 78 dB(A). Further, this snowmobile can operate using any blend of gasoline and ethanol from E0 to E85. Finally, achieving these goals would be a hollow victory if the cost and performance of the snowmobile were severely compromised. Snowmobiling is, after all, a recreational sport; thus the snowmobile must remain fun to drive and cost effective to produce. The details of this design effort including performance data are discussed in this paper. Specifically, the effort to modify a commercially available snowmobile using a two cylinder, four-stroke engine is described. This snowmobile was modified to run on a range of ethanol blended fuels using a closed-loop engine control system.
Technical Paper

The Effect of Multiple Spark Discharge on the Cold-Startability of an E85 Fueled Vehicle

1999-03-01
1999-01-0609
This paper describes experiments conducted to determine the effect of multiple spark discharge ignition systems and spark plug electrode design on cold start performance of a dedicated E85 fueled vehicle. Tests were conducted using three different ignition configurations: OEM ignition and spark plugs, multiple spark discharge ignition with OEM spark plugs, and multiple spark discharge ignition with large gap circular electrode spark plugs. The multiple spark discharge ignition with OEM spark plugs showed a significant improvement in cold start performance over the OEM ignition, but the addition of the circular electrode spark plugs caused a decrease in cold start performance. The circular ground spark plugs did produce a higher ending coolant temperature than either of the other configurations.
Technical Paper

The Effect of a Multiple Spark Discharge Ignition System and Spark Plug Electrode Configuration on Cold Starting of a Dedicated E85 Fueled Vehicle

1999-08-02
1999-01-2664
This paper describes the experiments conducted to determine the effect of high energy multiple spark discharge (MSD) ignition systems and spark plug electrode design, on the cold start performance of a vehicle which was converted for dedicated operation on E85 (a blend of 85% ethanol and 15% gasoline) fuel. Tests were conducted using three different ignition configurations; original equipment manufacturer (OEM) ignition and spark plugs, high energy multiple spark discharge (MSD) ignition with OEM, J-type spark plugs, and high energy MSD ignition with surface gap electrode spark plugs. The high energy MSD ignition with OEM spark plugs showed a significant improvement in cold start performance over the OEM ignition. The addition of the surface gap spark plugs caused a decrease in cold start performance. Despite this, the surface gap spark plugs produced higher ending coolant temperature than the other configurations.
X