Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Computerized Optimization Method Of Engine Mounting System

2003-05-05
2003-01-1461
This paper presents a method for optimization design of an engine mounting system subjected to some constraints. The engine center of gravity, the mount stiffness rates, the mount locations and/or their orientations with respect to the vehicle can be chosen as design variables, but some of them are given in advance or have limitations because of the packaging constraints on the mount locations, as well as the individual mount rate ratio limitations imposed by manufacturability. A computer program, called DynaMount, has been developed that identifies the optimum design variables for the engine mounting system, including decoupling mode, natural frequency placement, etc.. The degree of decoupling achieved is quantified by kinetic energy distributions calculated for each of the modes. Several application examples are presented to illustrate the validity of this method and the computer program.
Technical Paper

A Fully Variable Mechanical Valvetrain with a Simple Moving Pivot

2005-04-11
2005-01-0770
A continuously variable lift, duration and phase mechanical lift mechanism is described, as applied to the intake valvetrain of a SOHC, 4-valve per cylinder, four-cylinder production engine. Improvements in fuel economy were sought by reduction of pumping losses and improved charge preparation, and optimization of WOT torque was attempted by variation of intake valve closing angle. Adjustment of the mechanism is achieved by movement of the pivot shaft for the rocker arms. The relationship between lift, duration and phase is predetermined at the design stage, and is fixed during operation. There is considerable design flexibility to achieve the envelope of lift curves deemed desirable. The operation of the mechanism is described, as are the development procedure, testing with fixed cams, some cycle simulation, friction testing on a separate rig and dyno testing results for idle, part load and WOT.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A Multiple Order Conformability Model for Uniform Cross-Section Piston Rings

2005-04-11
2005-01-1643
This paper examines the conformability of elastic piston rings to a distorted cylinder bore. Several bounds are available in the literature to help estimate the maximum allowable Fourier coefficient in a Fourier expansion of bore distortion: the analytically derived bounds in [7] and [8], and the semi-empirically derived bounds discussed in [9]. The underlying assumptions for each set of analytic bounds are examined and a multiple order algorithm is derived. The proposed algorithm takes account of multiple orders of distortion at once. It is tested with finite element (FE) data and compared to the classical bound approach. The results indicate that the bounds in [7] are compatible with linear elasticity theory (LET), whereas the bounds in [8] are not. Furthermore, numerical evidence indicates that the present multiple order algorithm can predict seal breaches more accurately than either of the other analytic bounds.
Technical Paper

A Study on Vehicle Elastomer Mount Preloading and Impact Response with Test Validation

2005-04-11
2005-01-1415
A variety of elastomer mounts are being used for vehicles as isolators/dampers between body and frame, on the engine cradle, etc. These vehicle flexible mounts, made of mainly rubber materials and housed in a metallic tube, are indispensable components affecting the quality of the vehicle ride, noise and vibration. In the auto industry, the usual practice when designing vehicle flexible mounts is to minimally reflect impact considerations in the mount design features. However, in most high-speed vehicle crash events where the mounts fail, the crash responses, including occupant injury severity, are known to be very different from the responses of non-failure cases. Even in low-speed vehicle impact cases, excessive deformation of the flexible mounts could cause significant variance in the compliance of the vehicle acceleration level to the air-bag firing and timing threshold requirements.
Technical Paper

An Experimental Study on the Effect of Intake Primary Runner Blockages on Combustion and Emissions in SI Engines under Part-Load Conditions

2004-10-25
2004-01-2973
Charge motion is known to accelerate and stabilize combustion through its influence on turbulence intensity and flame propagation. The present work investigates the effect of charge motion generated by intake runner blockages on combustion characteristics and emissions under part-load conditions in SI engines. Firing experiments have been conducted on a DaimlerChrysler (DC) 2.4L 4-valve I4 engine, with spark range extending around the Maximum Brake Torque (MBT) timing. Three blockages with 20% open area are compared to the fully open baseline case under two operating conditions: 2.41 bar brake mean effective pressure (bmep) at 1600 rpm, and 0.78 bar bmep at 1200 rpm. The blocked areas are shaped to create different levels of swirl, tumble, and cross-tumble. Crank-angle resolved pressures have been acquired, including cylinders 1 and 4, intake runners 1 and 4 upstream and downstream of the blockage, and exhaust runners 1 and 4.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Chrysler 45RFE a New Generation Light Truck Automatic Transmission

1999-03-01
1999-01-1260
The 45RFE is a new generation electronically controlled rear wheel drive automatic transmission. It employs real-time feedback, closed-loop modulation of shift functions to achieve outstanding shift quality and to meet demanding durability goals. It uses no shift valves; all friction element applications are effected with high-flow electro-hydraulic solenoid valves. A unique gear train arrangement of three planetary carriers allows all sun gears and annulus gears to have the same number of teeth respectively and use a common pinion gear in all carriers, resulting in significant manufacturing simplification. The three-planetary system is designed for four forward ratios of 3.00, 1.67, 1.00 and 0.75 and one reverse gear ratio equal to the low gear ratio. A fifth ratio of 1.50 is used only in certain kick-down shift sequences for highway passing. A sixth forward ratio, an additional overdrive ratio of 0.67, is available in the hardware.
Technical Paper

Complex Systems Method Applied to Identify Carbon Dioxide Emission Reductions for Light-Duty Vehicles for the 2020-2025 Timeframe

2012-04-16
2012-01-0360
The U.S. Environmental Protection Agency, U.S. Department of Transportation's National Highway and Traffic Safety Administration, and the California Air Resources Board have recently released proposed new regulations for greenhouse gas emissions and fuel economy for light-duty vehicles and trucks in model years 2017-2025. These proposed regulations intend to significantly reduce greenhouse gas emissions and increase fleet fuel economy from current levels. At the fleet level, these rules the proposed regulations represent a 50% reduction in greenhouse gas emissions by new vehicles in 2025 compared to current fleet levels. At the same time, global growth, especially in developing economies, should continue to drive demand for crude oil and may lead to further fuel price increases. Both of these trends will therefore require light duty vehicles (LDV) to significantly improve their greenhouse gas emissions over the next 5-15 years to meet regulatory requirements and customer demand.
Technical Paper

Design of a Rapid Prototyping Engine Management System for Development of Combustion Feedback Control Technology

2006-04-03
2006-01-0611
Combustion feedback using cylinder pressure sensors, ion current sensors or alternative sensing techniques is actively under investigation by the automotive industry to meet future legislative emissions requirements. One of the drawbacks of many rapid prototyping engine management systems is their available analog interfaces, often limited to 10-12 bits with limited bandwidth, sampling rate and very simple anti-aliasing filters. Processing cylinder pressure or other combustion feedback sensors requires higher precision, wider bandwidths and more processing power than is typically available. For these reasons, Ricardo in collaboration with GM Research has developed a custom, high precision analog input subsystem for the rCube rapid prototyping control system that is specifically targeted at development of combustion feedback control systems.
Technical Paper

Design through Collaboration: A Supplier Partnership Paradigm

2000-03-06
2000-01-1389
New supplier / manufacturer relationship are necessary to produce products quickly, cost-effectively, and with features expected by the customer. However, the need for a new relationship is not universally accepted and endorsed. Resistance can be minimized through supplier self-assessment (such as Ford Motor Company's web-based instruments), management initiatives, and incentives. Trust and sharing are hallmarks. This strategy requires a new workplace paradigm affecting culture and people issues. Teams, extend across companies, share ideas and innovations. Decisions need to be mutually beneficial and the long-term value, for supplier and manufacturer, needs to be considered.
Technical Paper

Detailed Modeling of Liquid Fuel Sprays in One-Dimensional Gas Flow Simulation

2004-10-25
2004-01-3000
In internal combustion engines, liquid fuel injection is one of the most prevalent means of fuel delivery and air-fuel mixture preparation. The behavior of the fuel spray and wall film is a key factor in determining air-fuel mixing and hence combustion and emissions. A comprehensive model for the liquid fuel spray has been developed in conjunction with the one-dimensional gas flow code WAVE. The model includes droplet dynamics and evaporation, spray-wall impingement, wall film dynamics and evaporation. The fuel injector can be placed in the manifold, inlet port or cylinder. Liquid fuel droplets are injected with a prescribed size distribution, and their subsequent movement and vaporization are modeled via the discrete particle approach, frequently used in multi-dimensional CFD codes. This approach ensures conservation of mass, momentum and energy between the gas and liquid phases.
Technical Paper

Development of an Engine Stop/Start at Idle System

2005-04-11
2005-01-0069
A project was undertaken to demonstrate an engine stop/start at idle system utilizing a 12 volt Belt driven Starter Generator (BSG). The system was developed on a production four cylinder vehicle to determine emissions, driveability, and fuel economy impact.
Technical Paper

EBDI® - Application of a Fully Flexible High BMEP Downsized Spark Ignited Engine

2010-04-12
2010-01-0587
The Ethanol-Boosted Direct Injection (EBDI) demonstrator engine is a collaborative project led by Ricardo targeted at reducing the fuel consumption of a spark-ignited engine. This paper describes the design challenges to upgrade an existing engine architecture and the synergistic use of a combination of technologies that allows a significant reduction in fuel consumption and CO₂ emissions. Features include an extremely reduced displacement for the target vehicle, 180 bar cylinder pressure capability, cooled exhaust gas recirculation, advanced boosting concepts and direct injection. Precise harmonization of these individual technologies and control algorithms provide optimized operation on gasoline of varying octane and ethanol content.
Technical Paper

Effect of Tire Stiffness on Vehicle Loads

2005-04-11
2005-01-0825
Tire stiffness can have a significant effect on the spindle and component loads. While its’ effect on the component loads may show a different trend. This paper deals with data acquisition loads using Wheel Force Transducer (WFT) with 17 inch, 18 inch and 20 inch tires and shows how the spindle loads changed for different tire. These loads are applied on the analytical suspension model to generate both component and the body attachment loads. Some of the measured channels are correlated for all the wheel sizes for multiple events to ensure the confidence in the model. It is found that even if spindle loads are increased with tire stiffness, the component loads do not necessarily show a similar trend. This paper studies why higher spindle forces do not always give higher component loads and what are the possible alternatives one may look into to shortlist or select one set of loads over the other.
Technical Paper

Effects of Different Vehicle Parameters on Car to Car Frontal Crash Fatality Risk Estimated through a Parameterized Model

2006-04-03
2006-01-1134
For the purposes of analyzing and understanding the general effects of a set of different vehicle attributes on overall crash outcome a fleet model is used. It represents the impact response, in a one-dimensional sense, of two vehicle frontal crashes, across the frontal crash velocity spectrum. The parameters studied are vehicle mass, stiffness, intrusion, pulse shape and seatbelt usage. The vehicle impact response parameters are obtained from the NCAP tests. The fatality risk characterization, as a function of the seatbelt use and vehicle velocity, is obtained from the NASS database. The fatality risk is further mapped into average acceleration to allow for evaluation of the different vehicle impact response parameters. The results indicate that the effects of all the parameters are interconnected and none of them is independent. For example, the effect of vehicle mass on fatality risk depends on seatbelt use, vehicle stiffness, available crush, intrusion and pulse shape.
Journal Article

Enabling Safety and Mobility through Connectivity

2010-10-19
2010-01-2318
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) networks within the Intelligent Transportation System (ITS) lead to safety and mobility improvements in vehicle road traffic. This paper presents case studies that support the realization of the ITS architecture as an evolutionary process, beginning with driver information systems for enhancing feedback to the users, semi-autonomous control systems for improved vehicle system management, and fully autonomous control for improving vehicle cooperation and management. The paper will also demonstrate how the automotive, telecom, and data and service providers are working together to develop new ITS technologies.
Technical Paper

Evaluation of Cylinder Pressure Transducer Accuracy based upon Mounting Style, Heat Shields, and Watercooling

2005-10-24
2005-01-3750
This investigation evaluated different pressure transducers in one cylinder to examine the combustion measurement differences between them simultaneously. There were a total of eleven transducers ranging in both diameter and type of transducer (piezo-electric, piezoresistive, and optical). Furthermore, the sensors differed in the methodology for minimizing signal distortion due to temperature. This methodology could take the form of various size mounting passages, heat shields, watercooling or heat transfer paths. To evaluate the sensors, different engine operating conditions were conducted, focusing at full load and low speeds. Other hardware configurations of the same engine family were used to exaggerate the combustion environment, specifically a tumble-motion plate and turbocharging.
Technical Paper

Experimental & Computational Simulations Utilized During the Aerodynamic Development of the Dodge Intrepid R/T Race Car

2002-12-02
2002-01-3334
Experimental and computational simulation techniques were concurrently employed throughout the aerodynamic development of the NASCAR Dodge Intrepid R/T in order to achieve a greater understanding of the complex flow fields involved. With less than 500 days to design, understand, and build a competitive vehicle, the development team utilized a closed loop approach to testing. Scale wind tunnel models and Computational Fluid Dynamics (CFD) were used to identify program direction and to speed the development cycle versus the traditional process of full scale testing. This paper will detail the process and application of both the experimental and computational techniques used in the aerodynamic development of the Intrepid R/T race vehicle, primarily focusing on the earlier stages that led to its competition introduction at the start of the 2001 season.
Technical Paper

Experimental Determination of an Engine's Inertial Properties

2007-05-15
2007-01-2291
Determination of an engine's inertial properties is critical during vehicle dynamic analysis and the early stages of engine mounting system design. Traditionally, the inertia tensor can be determined by torsional pendulum method with a reasonable precision, while the center of gravity can be determined by placing it in a stable position on three scales with less accuracy. Other common experimental approaches include the use of frequency response functions. The difficulty of this method is to align the directions of the transducers mounted on various positions on the engine. In this paper, an experimental method to estimate an engine's inertia tensor and center of gravity is presented. The method utilizes the traditional torsional pendulum method, but with additional measurement data. With this method, the inertia tensor and center of gravity are estimated in a least squares sense.
X