Refine Your Search

Search Results

Viewing 1 to 9 of 9
Video

Advanced Combustion & System Engineering - Affordable Fuel Economy?

2012-05-10
Future fuel economy targets represent a significant challenge to the automotive industry. While a range of technologies are in research and development to address this challenge, they all bring additional cost and complexity to future products. The most cost effective solutions are likely to be combinations of technologies that in isolation might have limited advantages but in a systems approach can offer complementary benefits. This presentation describes work carried out at Ricardo to explore Intelligent Electrification and the use of Stratified Charge Lean Combustion in a spark ignition engine. This includes a next generation Spray Guided Direct Injection SI engine combustion system operating robustly with highly stratified dilute mixtures and capable of close to 40% thermal efficiency with very low engine-out NOx emissions.
Technical Paper

An Experimental Study on the Effect of Intake Primary Runner Blockages on Combustion and Emissions in SI Engines under Part-Load Conditions

2004-10-25
2004-01-2973
Charge motion is known to accelerate and stabilize combustion through its influence on turbulence intensity and flame propagation. The present work investigates the effect of charge motion generated by intake runner blockages on combustion characteristics and emissions under part-load conditions in SI engines. Firing experiments have been conducted on a DaimlerChrysler (DC) 2.4L 4-valve I4 engine, with spark range extending around the Maximum Brake Torque (MBT) timing. Three blockages with 20% open area are compared to the fully open baseline case under two operating conditions: 2.41 bar brake mean effective pressure (bmep) at 1600 rpm, and 0.78 bar bmep at 1200 rpm. The blocked areas are shaped to create different levels of swirl, tumble, and cross-tumble. Crank-angle resolved pressures have been acquired, including cylinders 1 and 4, intake runners 1 and 4 upstream and downstream of the blockage, and exhaust runners 1 and 4.
Technical Paper

Benchmarking a 2-Stroke Spark Ignition Heavy Fuel Engine

2012-04-16
2012-01-0397
Heavy fuel engines have typically been limited to large, heavy compression ignition engines. However, with the push by the US military to use a common fuel (JP5/JP8/diesel) there is a need to develop small, lightweight, high performance engines that are also capable of operating on heavy fuel. Recent advancements in air assisted direct injection technologies have improved fuel atomization to the level necessary to overcome the poor physical properties of heavy fuel. This has permitted the operation of small two-stroke engines which retain the advantage of a lightweight design with high power output. This paper discusses the process of benchmarking a two-stroke heavy fuel spark ignited engine with an integrated air-assist direct injection system. The setup and commissioning phases of the testing are outlined, including specific techniques for quantifying scavenging, burn rate, and heat release characteristics with the objective of validating a 1-D performance simulation model.
Technical Paper

Cam-phasing Optimization Using Artificial Neural Networks as Surrogate Models-Fuel Consumption and NOx Emissions

2006-04-03
2006-01-1512
Cam-phasing is increasingly considered as a feasible Variable Valve Timing (VVT) technology for production engines. Additional independent control variables in a dual-independent VVT engine increase the complexity of the system, and achieving its full benefit depends critically on devising an optimum control strategy. A traditional approach relying on hardware experiments to generate set-point maps for all independent control variables leads to an exponential increase in the number of required tests and prohibitive cost. Instead, this work formulates the task of defining actuator set-points as an optimization problem. In our previous study, an optimization framework was developed and demonstrated with the objective of maximizing torque at full load. This study extends the technique and uses the optimization framework to minimize fuel consumption of a VVT engine at part load.
Technical Paper

Correlating an Air Motion Number to Combustion Metrics and Initial Flame Kernel Development

2007-04-16
2007-01-0653
This study attempts to develop a correlation between an airflow motion number, combustion burn rates, and initial flame kernel development. To accomplish this task, several motion plates were evaluated on a flowbench in order to calculate a motion number that would represent the dynamic motion in the combustion chamber. Afterwards, the plates were tested on a spark ignited engine at several part throttle conditions while gathering cylinder pressure measurements. These cylinder pressure measurements would then yield the combustion burn rates for each plate. In addition to the combustion measurements, the flame kernel growth, velocity and direction of the flame kernel were measured using an AVL Visio-flame. Finally, the data was evaluated and an attempt to correlate the motion number of the plates to the different measurements for describing combustion was made.
Technical Paper

EBDI® - Application of a Fully Flexible High BMEP Downsized Spark Ignited Engine

2010-04-12
2010-01-0587
The Ethanol-Boosted Direct Injection (EBDI) demonstrator engine is a collaborative project led by Ricardo targeted at reducing the fuel consumption of a spark-ignited engine. This paper describes the design challenges to upgrade an existing engine architecture and the synergistic use of a combination of technologies that allows a significant reduction in fuel consumption and CO₂ emissions. Features include an extremely reduced displacement for the target vehicle, 180 bar cylinder pressure capability, cooled exhaust gas recirculation, advanced boosting concepts and direct injection. Precise harmonization of these individual technologies and control algorithms provide optimized operation on gasoline of varying octane and ethanol content.
Technical Paper

Fuel Effects in a Boosted DISI Engine

2011-08-30
2011-01-1985
Due to the recent drive to reduce CO₂ emissions, the turbocharged direct injection spark ignition (turbo DISI) gasoline engine has become increasingly popular. In addition, future turbo DISI engines could incorporate a form of charge dilution (e.g., lean operation or external EGR) to further increase fuel efficiency. Thus, the conditions experienced by the fuel before and during combustion are and will continue to be different from those experienced in naturally aspirated SI engines. This work investigates the effects of fuel properties on a modern and prototype turbo DISI engine, with particular focus on the octane appetite: How relevant are RON and MON in predicting a fuel's anti-knock performance in these modern/future engines? It is found that fuels with high RON and low MON values perform the best, suggesting the current MON requirements in fuel specifications could actually be detrimental.
Technical Paper

Using Neural Networks to Compensate Altitude Effects on the Air Flow Rate in Variable Valve Timing Engines

2005-04-11
2005-01-0066
An accurate air flow rate model is critical for high-quality air-fuel ratio control in Spark-Ignition engines using a Three-Way-Catalyst. Emerging Variable Valve Timing technology complicates cylinder air charge estimation by increasing the number of independent variables. In our previous study (SAE 2004-01-3054), an Artificial Neural Network (ANN) has been used successfully to represent the air flow rate as a function of four independent variables: intake camshaft position, exhaust camshaft position, engine speed and intake manifold pressure. However, in more general terms the air flow rate also depends on ambient temperature and pressure, the latter being largely a function of altitude. With arbitrary cam phasing combinations, the ambient pressure effects in particular can be very complex. In this study, we propose using a separate neural network to compensate the effects of altitude on the air flow rate.
Technical Paper

“Doing More with Less” - The Fuel Economy Benefits of Cooled EGR on a Direct Injected Spark Ignited Boosted Engine

2010-04-12
2010-01-0589
Due to the rising costs of fuel and increasingly stringent regulations, auto makers are in need of technology to enable more fuel-efficient powertrain technologies to be introduced to the marketplace. Such powertrains must not sacrifice performance, safety or driver comfort. Today's engine and powertrain manufacturers must, therefore, do more with less by achieving acceptable vehicle performance while reducing fuel consumption. One effective method to achieve this is the extreme downsizing of current direct injection spark ignited (DISI) engines through the use of high levels of boosting and cooled exhaust gas recirculation (EGR). Key challenges to highly downsized gasoline engines are retarded combustion to prevent engine knocking and the necessity to operate at air/fuel ratios that are significantly richer than the stoichiometric ratio.
X