Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Cam-phasing Optimization Using Artificial Neural Networks as Surrogate Models-Fuel Consumption and NOx Emissions

Cam-phasing is increasingly considered as a feasible Variable Valve Timing (VVT) technology for production engines. Additional independent control variables in a dual-independent VVT engine increase the complexity of the system, and achieving its full benefit depends critically on devising an optimum control strategy. A traditional approach relying on hardware experiments to generate set-point maps for all independent control variables leads to an exponential increase in the number of required tests and prohibitive cost. Instead, this work formulates the task of defining actuator set-points as an optimization problem. In our previous study, an optimization framework was developed and demonstrated with the objective of maximizing torque at full load. This study extends the technique and uses the optimization framework to minimize fuel consumption of a VVT engine at part load.
Technical Paper

Using Neural Networks to Compensate Altitude Effects on the Air Flow Rate in Variable Valve Timing Engines

An accurate air flow rate model is critical for high-quality air-fuel ratio control in Spark-Ignition engines using a Three-Way-Catalyst. Emerging Variable Valve Timing technology complicates cylinder air charge estimation by increasing the number of independent variables. In our previous study (SAE 2004-01-3054), an Artificial Neural Network (ANN) has been used successfully to represent the air flow rate as a function of four independent variables: intake camshaft position, exhaust camshaft position, engine speed and intake manifold pressure. However, in more general terms the air flow rate also depends on ambient temperature and pressure, the latter being largely a function of altitude. With arbitrary cam phasing combinations, the ambient pressure effects in particular can be very complex. In this study, we propose using a separate neural network to compensate the effects of altitude on the air flow rate.