Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

An Experimental Study Combustion and Emission Characteristics of HCNG with Dual Spark plug in a Constant Volume Chamber

Finding an alternative fuel and solving the environmental pollution are the main targets for the future internal combustion engines. CNG(Compressed Natural Gas) bus is used for a public transportation in Korea because it has low carbon/hydrogen ratio and discharges low pollutant emissions. But CNG fuel has low burning rate. Therefore, in this study, hydrogen is added and DSP(Dual Spark Plugs) are used for making up for the demerits in CNG. HCNG(Hydrogen-CNG) as a fuel is now considered as one of the alternative fuels due to its low pollutant emissions and high burning rate. An experimental study was carried out to obtain the fundamental data about the combustion and emission characteristics of premixed hydrogen and CNG in a CVC(Constant Volume Chamber) with various fraction of Hydrogen-CNG blends using SSP(Single Spark plug) and DSP.
Technical Paper

Characteristics of Syngas Combustion Based on Methane at Various Reforming Ratios

Characteristics of syngas combustion at various reforming ratios were studied numerically. The syngas was formed by the partial oxidation of methane to mainly hydrogen and carbon monoxide and cooled to ambient temperature. Stiochiometric and lean premixed flames of the mixtures of methane and the syngas were compared at the atmospheric temperature and pressure conditions. The adiabatic flame temperature decreased with the reforming ratio. The laminar burning velocity, however, increased with the reforming ratio. For stretched flames in a counterflow, the high temperature region was broadened with the reforming ratio. The maximum flame temperature decreased with the reforming ratio for the stoichiometric case, but increased for the lean case except for the region of very low stretch rate. The extinction stretch rate increased with the reforming ratio, implying that the syngas assisted flame is more resistance to turbulence level.
Technical Paper

Combustion and Emission Characteristics of Heavy Duty SI Engine Fueled with Synthetic Natural Gas (SNG)

Natural gas produced from coal or biomass is known as synthetic natural gas (SNG), which is expected to replace compressed natural gas (CNG). In this study, we used an 11-l heavy-duty CNG engine in a feasibility study of SNG. SNG, which is composed of 90.95% methane, 6.05% propane, and 3% hydrogen, was produced for the experiment and used as fuel to estimate its effects on combustion and emission characteristics. The torque, fuel flow rate, efficiency, fuel consumption, combustion stability, combustion phase, and emissions characteristics obtained using SNG were compared to those obtained using CNG in an engine speed range of 1,000-2,100 rpm under full load conditions. In addition, an engine fueled with SNG was given an overall evaluation using the World Harmonized Stationary Cycle (WHSC) emission test. The engine's knock characteristic was analyzed at 1,260 rpm under a full load condition. The results showed that there was no difference in power output.
Technical Paper

Effect of Exhaust Gas Recirculation on a Spark Ignition Engine Fueled with Biogas-Hydrogen Blends

Efforts have been made to apply biogas to an IC engine for power generation as a way to cope with the energy crisis as well as to reduce greenhouse gas. However, due to its gas component variations by origin and low energy density, using biogas in the engine applications and achieving a steady power generation is not an easy task. One way to overcome these deficiencies is to add hydrogen in biogas. Because of the excellent combustion characteristics of hydrogen, use of hydrogen-biogas blend fuel can allow not only accomplishing stable in-cylinder combustion, but also reducing the harmful emissions such as THC and CO. Despite several advantages of this approach, there exists a major drawback~a significant increase in NOx emission caused by high adiabatic combustion temperature of hydrogen.
Technical Paper

Effects of Compression Ratio and Valve Overlap on Feasibility of HCNG Engines for Heavy-Duty Vehicles

To counteract the harmful effects of vehicle emissions on humans and the environment, such as global warming due to greenhouse gases, there is a focus on gaseous fuels as an alternative energy source of transportation. Heavy-duty natural gas vehicles are widely used to improve the air quality of urban areas in Korea because natural gas has the advantage of low greenhouse gas emission levels. However, more in-depth study is required in order for clean fuel vehicles to hold a dominant position over well-developed diesel vehicles. It is difficult to meet reinforced emission standards with only a lean combustion strategy without an aftertreatment system in a lean-burn natural gas engine. Hydrogen-natural gas (HCNG) blends have been proposed as an alternative to improve fuel economy and emissions of lean-burn natural gas engines, since they have a wider flammability range and faster burning speed. HCNG blends could also play a role as a technical bridge for the hydrogen era.
Technical Paper

Knock and Emission Characteristics of Heavy-Duty HCNG Engine with Modified Compression Ratios

Reduction of carbon dioxide (CO₂) emission, which causes global warming, is an important guideline for vehicle engine development. There are two types of methods for reducing the CO₂ emission of a vehicle engine. The first involves improving engine efficiency. The second involves the use of a low-carbon fuel, i.e., fuel with high hydrogen to carbon ratio. Hydrogen-compressed natural gas blend (HCNG) has been researched as a low-carbon fuel. Given that thermal efficiency of an engine cycle increases with its compression ratio (CR), an HCNG engine with high compression ratio not only has high efficiency but also low CO₂ emission. However, unexpected combustion such as knock could occur owing to the increased CR. In this study, we investigated the knock and emission characteristics of an 11-L heavy-duty HCNG engine with a modified CR. A conventional CNG engine was fuelled with HCNG30 (CNG 70 vol% and hydrogen 30 vol%).