Refine Your Search



Search Results

Technical Paper

A Method to Combine a Tire Model with a Flexible Rim Model in a Hybrid MBS/FEM Simulation Setup

During the last ten years, there is a significant tendency in automotive design to use lower aspect ratio tires and meanwhile also more and more run-flat tires. In appropriate publications, the influences of these tire types on the dynamic loads - transferred from the road passing wheel center into the car - have been investigated pretty well, including comparative wheel force transducer measurements as well as simulation results. It could be shown that the fatigue input into the vehicle tends to increase when using low aspect ratio tires and particularly when using run-flat tires. But which influences do we get for the loading and fatigue behavior of the respective rims? While the influences on the vehicle are relatively easy to detect by using wheel force transducers, the local forces acting on the rim flange (when for example passing a high obstacle) are much more difficult to detect (in measurement as well as in simulation).
Technical Paper

A Sound Quality System for Engineers

In the eighties, the main concern in the automotive industry from a designer's standpoint was a level issue. In the nineties, the market has put more stringent requirements on the automotive industry with respect to noise in general and psychoacoustics. The governments have imposed lower limits with respect to pass-by noise standards. Customers are spending more time in their car than in the past and are demanding acoustical comfort. All of this is leading to an environment where a sound quality system is becoming a daily tool in the design and trouble-shooting world. This paper describes what should be looked for in a sound, how to quantify these properties and what tools are needed. These steps are then applied in a case study.
Technical Paper

A Source-Transfer-Receiver Approach to NVH Engineering of Hybrid/Electric Vehicles

Vehicles with electrified powertrains are being introduced at an increasing pace. On the level of interior sound, one is often inclined to assume that NVH problems in EV have disappeared together with the combustion engine. Three observations demonstrate that this is not the case. First of all, only the dominant engine sound disappears, not the noise from tire, wind or auxiliaries, which consequently become increasingly audible due to the removal of the broadband engine masking sound. Secondly, new noise sources like tonal sounds from the electro-mechanical drive systems emerge and often have, despite their low overall noise levels, a high annoyance rating. Thirdly, the fact that engine/exhaust sounds are often used to contribute to the “character” of the vehicle leads to an open question how to realize an appealing brand sound with EV. Hybrid vehicles are furthermore characterized by mode-switching effects, with impact on both continuity feeling and sound consistency problems.
Technical Paper

A Steel Solution for a Firewall Using a Hybrid Test/CAE Approach

The firewall design of a BMW1 is optimized for interior noise and weight using a Hybrid Interior Noise Synthesis (HINS) approach. This method associates a virtual firewall with a test based body model. A vibro-acoustic model of the firewall panel, including trim elements and full vehicle boundary conditions, is used for predictions in the 40 Hz - 400 Hz range. The short calculation time of this set-up allows multiple design iterations. The firewall noise is reduced by 0.9 dB and its mass by 5.1% through structural changes. Crashworthiness is maintained at its initial level using advanced steel processing. The total interior noise shows improvement in the 90 Hz - 140 Hz range.
Technical Paper

A Test-Based Procedure for the Identification of Rack and Pinion Steering System Parameters for Use In CAE Ride-Comfort Simulations

Current CAE modeling and simulation techniques in the time domain allow, by now, very accurate prediction of many ride-comfort performances of the cars. Nevertheless, the prediction of the steering wheel rotation vibration excited by, for instance, wheel unbalance or asymmetric obstacle impact, often runs into the difficulty of modeling the steering line with sufficient accuracy. For a classic rack and pinion, hydraulic assisted steering line, one of the challenges is to model the complex and non linear properties - stiffness, friction and damping - of the rack-rack case system. This paper proposes a rack model, thought for easy implementation in complex multi-body models, and an identification procedure of its parameters, based on measurements, in the operational range of the wheel unbalance excitation. The measurements have been gathered by specific tests on the components and the test set-up is also shown here.
Technical Paper

Advanced Modeling Approaches for the Evaluation of Interior Vehicle Acoustics over the Full Range of Frequencies

Stringent legislation by governmental agencies concerning human exposure to noise and vibrations on the one hand and the growing consumer awareness and need for comforts on the other hand are forcing automotive manufacturers to improve their products. Computer Aided Engineering (CAE) techniques and software tools enable virtual optimization thereby eliminating the need to build and test expensive prototypes. Deterministic, element-based approaches as the Finite Element (FE) and/or Boundary Element (BE) methods have become the tools of choice for analyzing the steady-state and dynamic characteristics of vehicles. However, these two techniques are limited to low-frequency applications due to the need for high mesh densities at mid and high frequencies resulting in higher computational costs and higher numerical errors associated with the polynomial approximations of the acoustic field variables. This paper discusses two types of approaches, viz.
Technical Paper

Advanced State Estimator Design for an Active Suspension

Active suspension systems aim at increasing safety by improving vehicle ride and handling performance while ensuring superior passenger comfort. Good control of this active system can only be achieved by providing the control algorithm with reliable and accurate signals for the required quantities. This paper presents the design and development of a state estimator that accurately provides the information required by a sky-hook controller, using a minimum of sensors. The vehicle inertial parameters are estimated by an algorithm based on Monte Carlo simulations and anthropometric data. All state updating is performed using Kalman filters. The resulting performance enhancement has been proven during test drives.
Technical Paper

Advances in Industrial Modal Analysis

One of the scientific fields where, for already more than 20 years, system identification plays a crucial role is this of structural dynamics and vibro-acoustic system optimization. The experimental approach is based on the “Modal Analysis” concept. The present paper reviews the test procedure and system identification principles of this approach. The main focus though is on the real problems with which engineers, performing modal analysis on complex structures on a daily basis, are currently confronted. The added value of several new testing approaches (laser methods, smart transducers…) and identification algorithms (spatial domain, subspace, maximum likelihood,..) for solving these problems is shown. The discussed elements are illustrated with a number of industrial case studies.
Technical Paper

Analysis of Global Dynamics of Rotating Systems like Jet Engines, with Special Emphasis on Harmonic Analysis in the Presence of Bearing with Clearances

The paper presents first a description of the methods used for the analysis of global dynamics of rotating systems like jet engines but also auxiliary power units. Different methodologies are described so to model rotating parts using beam, but also Fourier multi-harmonic, three dimensional models or to take into account cyclic symmetry and multistage cyclic symmetry concepts. Advantages and disadvantages of the different model types are discussed and compared. The coupling of the rotating parts with casings and stators is then discussed both in the inertial frame and in the rotating frame. The effect on global dynamics of bearing and other linking devices is taken into account for different type of analysis from critical speed analysis, to harmonic and transient analysis. The effect of gears and gear boxes coupling different rotors (like it is the case for auxiliary power units in a jet engine) is then discussed and appropriate methods described so to model this coupling effect.
Technical Paper

Development of Hybrid Model for Powerplant Vibration

This paper covers the application of hybrid vibro-acoustic simulation methods to shorten the design cycle of power-plant components. A comparison is made between Frequency Response Function based and Modal based algorithms for the generation of a predictive powerplant assembly model. The effectiveness of design modifications is evaluated by loading the original and modified predictive models with experimentally identified excitation forces. The procedure is validated by correlation with experimental data.
Technical Paper

ESC Hydraulic Circuit Modeling and Model Reduction in the Aim of Reaching Real Time Capability

An ESC hydraulic modulator contains on/off valves and proportional valves. A complex model of one proportional valve is detailed and used as a basis for model reduction the activity index technique. One interesting aspect is that the technology of the proportional valves remains (i.e. ball valves under conical seat). As such, the parameters are physical parameters forming the ones to master (manufacturing tolerances) by the supplier to also master the dynamic behavior of the system. Once this has been done, a complete model of half an ESC braking circuit is built including the pump, the reservoir, the pipes and hoses as well as the calipers. The activity index technique is thus reused on the circuit to further reduce it to finally obtain a modeling level acceptable for real time purpose.
Journal Article

Effect of Local Mesh Refinement on Inverse Numerical Acoustics

Inverse numerical acoustics is a method which reconstructs the source surface normal velocity from the sound measured in the near-field around the source. This is of particular interest when the source is rotating or moving, too light or too hot to be instrumented by accelerometers. The use of laser vibrometers is often of no remedy due to the complex shape of the source. The Inverse Numerical Acoustics technique is based on the inversion of transfer relations (Acoustic Transfer Vectors) using truncated Singular Value Decomposition (SVD). Most of the time the system is underdetermined which results in a non unique solution. The solution obtained by the truncated SVD is the minimal solution in the RMS sense. This paper is investigating the impact of non homogeneities in the mesh density (local mesh refinement) on the retrieved solution for underdetermined systems. It will be shown that if transfer quantities are inverted as such, big elements get a higher weight in the inversion.
Technical Paper

Electric Motor Noise in a Lightweight Steel Vehicle

The present work attempts a complete noise and vibration analysis for an electric vehicle at concept stage. The candidate vehicle is the Future Steel Vehicle (FSV), a lightweight steel body with an electric motor developed by WorldAutoSteel [1,2,3]. Measurements were conducted on two small Mitsubishi vehicles that both share the same body, yet one is equipped with an internal combustion engine and the other with an electric motor. The outcome was used as a starting point to identify assets and pitfalls of electric motor noise and draw a set of Noise Vibration and Harshness (NVH) targets for FSV. Compared to a combustion engine, the electric motor shows significantly lower sound pressure levels, except for an isolated high frequency peak heard at high speeds (3500 Hz when the vehicle drives at top speed). The prominence of this peak is lowered by increased use of acoustic absorbent materials in the motor compartment.
Technical Paper

Experimental Determination of Low Frequency Noise Contributions of Interior Vehicle Body Panels in Normal Operation

Low frequency noise from engine- and wheel-vibrations often dominates the interior noise spectrum in vehicles. For the optimization of vehicle bodies it is necessary to know the contribution of individual body panels to sound pressures at the passengers ear. An experimental approach is presented which makes use of reciprocal acoustic transfer function measurements and surface acceleration measurements in normal road operation. This method, called Airborne Source Quantification, has been applied as a diagnostic tool to the interior noise of a four cylinder diesel engined van.
Technical Paper

Experimental Transfer Path Analysis of a Hybrid Bus

This paper presents the results of an experimental test campaign carried out on a city bus powered by serial hybrid power train. The driveline system combines an Internal Combustion Engine with a battery pack and two electric motors. Tests were aimed at identifying the salient signal characteristics of the noise spectra recorded during operating conditions and to assess the acoustic comfort in the passenger compartment. Transfer Path Analysis technique was applied to identify airborne and structure borne vibro-acoustic loads, to measure transfer functions linking source locations to target locations and to estimate the internal vibro-acoustic comfort in operating conditions.
Technical Paper

Experimental and Numerical Modelling of Friction Induced Noise in Disc Brakes

Friction-induced vibration is a serious problem in many industrial applications containing systems with rotating and/or sliding parts. Brake noise is a typical example. The critical element in the noise generation process is the combination of friction-induced loads with the dynamics of the braking system. In the present paper, a detailed experimental and numerical study of a specific low-frequency brake squeal problem is made on a simplified brake noise test rig. First, the signal and spatial characteristics of the noise were analyzed by spectral and acoustic holography techniques. A parametric study of influence factors as brake pressure, rotation speed, etc. was made. Operational deformation analysis during squeal confirms the dominant modal behavior of the components, implying the critical role of the assembly structural dynamics.
Technical Paper

Extraction of Static Car Body Stiffness from Dynamic Measurements

This paper describes a practical approach to extract the global static stiffness of a body in white (BIW) from dynamic measurements in free-free conditions. Based on a limited set of measured frequency response functions (FRF), the torsional and bending stiffness values are calculated using an FRF based substructuring approach in combination with inverse force identification. A second approach consists of a modal approach whereby the static car body stiffness is deduced from a full free-free modal identification including residual stiffness estimation at the clamping and load positions. As an extra important result this approach allows for evaluating the modal contribution of the flexible car body modes to the global static stiffness values. The methods have been extensively investigated using finite element modeling data and verified on a series of body in white measurements.
Journal Article

Fatigue Life Simulation on Fiber Reinforced Composites - Overview and Methods of Analysis for the Automotive Industry

The need of weight reduction for fuel reduction and CO₂ regulations enforces the use of light-weight materials for structural parts also. The importance of reinforced composites will grow in this area. While the structural behavior and the simulation up to high strain-rate processes for those materials have been in the focus of investigation for many years, nowadays the simulation of high cycle fatigue behavior is getting important as well. Efficient fatigue analysis for metals was developed by understanding the microscopic behavior (crack nucleation and initiation) and bringing it to the macroscopic level by combining it with the matching test data (SN curves, etc.). Similar approaches can be applied to composite materials as well.
Technical Paper

Functional Testing of Alternator Pulleys in Chassis Dynamometer

Alternators usually have a solid pulley to connect it to the Front-End Accessory Drive (FEAD) system. Current stringent emissions regulations and fuel economy push for new alternatives to meet goals such as, for instance, reduced idle speed and engine downsizing. However, achieving these goals could ultimately generate NVH issues, such as belt slip chirp noise, or reduced accessory-drive support bearing life due to the high vibration levels in the FEAD. Furthermore, increased demand for on-board electric/electronics systems are requiring the use of larger alternators, with bigger inertia, becoming an additional source of vibration.
Technical Paper

Gear Mesh Excitation Models for Assessing Gear Rattle and Gear Whine of Torque Transmission Systems with Planetary Gear Sets

This paper presents four methodologies for modeling gear mesh excitations in simple and compound planetary gear sets. The gear mesh excitations use simplified representations of the gear mesh contact phenomenon so that they can be implemented in a numerically efficient manner. This allows the gear mesh excitations to be included in transmission system-level, multibody dynamic models for the assessment of operating noise and vibration levels. After presenting the four approaches, a description is made regarding how they have been implemented in software. Finally, example models are used to do a comparison between the methods