Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D CFD Upfront Optimization of the In-Cylinder Flow of the 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1492
This paper presents part of the analytical work performed for the development and optimization of the 3.5L EcoBoost combustion system from Ford Motor Company. The 3.5L EcoBoost combustion system is a direct injected twin turbocharged combustion system employing side-mounted multi-hole injectors. Upfront 3D CFD, employing a Ford proprietary KIVA-based code, was extensively used in the combustion system development and optimization phases. This paper presents the effect of intake port design with various levels of tumble motion on the combustion system characteristics. A high tumble intake port design enforces a well-organized stable motion that results in higher turbulence intensity in the cylinder that in turn leads to faster burn rates, a more stable combustion and less fuel enrichment requirement at full load.
Technical Paper

A CAE Optimization Process for Vehicle High Frequency NVH Applications

2005-05-16
2005-01-2422
A CAE SEA-based optimization process for the enhancement of vehicle high frequency NVH applications is developed and validated. The CAE simulation, based on statistical energy analysis (SEA) theory [1], has been used to analyze high frequency NVH responses for the vehicle sound package development. However, engineers have always faced two challenges during the vehicle SEA model development. One is to create a reliable SEA model, which is correlated well with hardware test data. The other is to have a systematic approach by using the correlated model to design effective and cost efficient sound package to improve vehicle interior quietness. The optimization process presented in this paper, which integrates analysis, design sensitivity, and optimization solver, has been developed to address the challenges and to serve the needs. A non-correlated Sport Utility Vehicle (SUV) and a correlated midsize car models were used to demonstrate the capability of the proposed optimization process.
Journal Article

A Calibration Optimizer Tool for Torque Estimation of K0 Clutch in Hybrid Automatic Transmissions

2017-03-28
2017-01-0603
Software development for automotive application requires several iterations in order to tune parameters and strategy logic to operate accordantly with optimal performance. Thus, in this paper we present an optimizer method and tool used to tune calibration parameters related to torque estimation for a hybrid automatic transmission application. This optimizer aims to minimize the time invested during the software calibration and software development phases that could take significant time in order to cover the different driving conditions under which a hybrid automatic transmission can operate. For this reason, an optimization function based on the Nelder-Mead simplex algorithm using Matlab software helps to find optimized calibration values based on a cost function (square sum error minimization).
Technical Paper

A Cost-Effective Offline Routing Optimization Approach to Employee Shuttle Services

2017-03-28
2017-01-0240
Ride Hailing service and Dynamic Shuttle are two key smart mobility practices, which provide on-demand door-to-door ride-sharing service to customers through smart phone apps. On the other hand, some big companies spend millions of dollars annually in third party vendors to offer shuttle services to pick up and drop off employees at fixed locations and provide them daily commutes for employees to and from work. Efficient fixed routing algorithms and analytics are the key ingredients for operating efficiency behind these services. They can significantly reduce operating costs by shortening bus routes and reducing bus numbers, while maintaining the same quality of service. This study developed an off-line optimization routing method for employee shuttle services including regular work shifts and demand based shifts (e.g. overtime shifts) in some regions.
Technical Paper

A Data Mining and Optimization Process with Shape and Size Design Variables Consideration for Vehicle Application

2018-04-03
2018-01-0584
This paper presents a design process with data mining technique and advanced optimization strategy. The proposed design method provides insights in three aspects. First, data mining technique is employed for analysis to identify key factors of design variables. Second, relationship between multiple types of size and shape design variables and performance responses can be analyzed. Last but not least, design preference can be initialized based on data analysis to provide priori guidance for the starting design points of optimization algorithm. An exhaust system design problem which largely contributes to the improvement of vehicular Noise, Vibration and Harshness (NVH) performance is employed for the illustration of the process. Two types of design parameters, structural variable (gauge of component) and layout variable (hanger location), are considered in the studied case.
Technical Paper

A Drum Brake Squeal Analysis in the Time Domain

2005-05-16
2005-01-2312
Brake squeal has been a chronic customer complaint, often appearing high on the list of items that reduce customers' satisfaction with their vehicles. Brake squeal can emanate from either a drum brake or a disc brake even though the geometry of the two systems is significantly different. A drum brake generates friction within a cylindrical drum interacting with two semi-circular linings. A disc brake consists of a flat disc and two flat pads. The observed squeal behavior in a vehicle differs somewhat between drum and disc brakes. A drum brake may have a loud noise coming from three or more squeal frequencies, whereas a disc brake typically has one or two major squeal frequencies making up the noise. A good understanding of the operational deflection shapes of the brake components during noise events will definitely aid in design to reduce squeal occurrences and improve product quality.
Technical Paper

A Finite Element and Experimental Analysis of a Light Truck Leaf Spring System Subjected to Pre-Tension and Twist Loads

2005-11-01
2005-01-3568
In this study the finite element method is used to simulate a light truck multi-leaf spring system and its interaction with a driven axle, u-bolts, and interface brackets. In the first part of the study, a detailed 3-D FE model is statically loaded by fastener pre-tension to determine stress, strain, and contact pressure. The FE results are then compared and correlated to both strain gage and interface pressure measurements from vehicle hardware test. Irregular contact conditions between the axle seat and leaf spring are investigated using a design of experiments (DOE) approach for both convex and discrete step geometries. In the second part of the study, the system FE model is loaded by both fastener pre-tension and external wheel end loads in order to obtain the twist motion response. Torsional deflection, slip onset, and subsequent slip motion at the critical contact plane are calculated as a function of external load over a range of Coulomb friction coefficients.
Technical Paper

A Method for Rapid Durability Test Development

2017-03-28
2017-01-0199
Designing a durability test for an automatic transmission that appropriately reflects customer usage during the lifetime of the vehicle is a formidable task; while the transmission and its components must survive severe usage, overdesigning components leads to unnecessary weight, increased fuel consumption and increased emissions. Damage to transmission components is a function of many parameters including customer driving habits and vehicle and transmission characteristics such as weight, powertrain calibration, and gear ratios. Additionally, in some cases durability tests are required to verify only a subset of the total parameter space, for example, verifying only component modifications. Lastly, the ideal durability test is designed to impose the worst case loading conditions for the maximum number of internal components, be as short as practicable to reduce testing time, with minimal variability between tests in order to optimize test equipment and personnel resources.
Journal Article

A Model Based Approach for Electric Steering Tuning to Meet Vehicle Steering Performance Targets

2017-03-28
2017-01-1493
Subjective steering feel tuning and objective verification tests are conducted on vehicle prototypes that are a subset of the total number of buildable combinations of body style, drivetrain and tires. Limited development time, high prototype vehicle cost, and hence limited number of available prototypes are factors that affect the ability to tune and verify all the possible configurations. A new model-based process and a toolset have been developed to enhance the existing steering development process such that steering tuning efficiency and performance robustness can be improved. The innovative method utilizes the existing vehicle dynamics simulation and/or physical test data in conjunction with steering system control models, and provides users with simple interfaces which can be used by either CAE or development engineers to perform virtual tuning of the vehicle steering feel to meet performance targets.
Technical Paper

A Modeling Analysis of Fibrous Media for Gasoline Particulate Filters

2017-03-28
2017-01-0967
With an emerging need for gasoline particulate filters (GPFs) to lower particle emissions from gasoline direct injection (GDI) engines, studies are being conducted to optimize GPF designs in order to balance filtration efficiency, backpressure penalty, filter size, cost and other factors. Metal fiber filters could offer additional designs to the GPF portfolio, which is currently dominated by ceramic wall-flow filters. However, knowledge on their performance as GPFs is still limited. In this study, modeling on backpressure and filtration efficiency of fibrous media was carried out to determine the basic design criteria (filtration area, filter thickness and size) for different target efficiencies and backpressures at given gas flow conditions. Filter media with different fiber sizes (8 - 17 μm) and porosities (80% - 95%) were evaluated using modeling to determine the influence of fiber size and porosity.
Technical Paper

A Multi-Objective Optimization and Robustness Assessment Framework for Passenger Airbag Shape Design

2007-04-16
2007-01-1505
A passenger airbag is an important part of a vehicle restraint system which provides supplemental protection to an occupant in a crash event. New Federal Motor Vehicle Safety Standards No. 208 requires considering multiple crash scenarios at different speeds with various sizes of occupants both belted and unbelted. The increased complexity of the new requirements makes the selection of an optimal airbag shape a new challenge. The aim of this research is to present an automated optimization framework to facilitate the airbag shape design process by integrating advanced tools and technologies, including system integration, numerical optimization, robust assessment, and occupant simulation. A real-world frontal impact application is used to demonstrate the methodology.
Technical Paper

A New Experimental Methodology to Estimate Chassis Force Transmissibility and Applications to Road NVH Improvement

2003-05-05
2003-01-1711
The performance of structure-borne road NVH can be cascaded down to three major systems: 1) vehicle body structure, 2) chassis/suspension, 3) tire/wheel. The forces at the body attachment points are controlled by the isolation efficiency of the chassis/suspension system and the excitation at the spindle/knuckle due to the tire/road interaction. The chassis force transmissibility is a metric to quantify the isolation efficiency. This paper presents a new experimental methodology to estimate the chassis force transmissibility from a fully assembled vehicle. For the calculation of the transmissibility, the spindle force/moment estimation and the conventional Noise Path Analysis (NPA) methodologies are utilized. A merit of the methodology provides not only spindle force to body force transmissibility but also spindle moment to body force transmissibility. Hence it enables us to understand the effectiveness of the spindle moments on the body forces.
Technical Paper

A New Experimental Methodology to Estimate Tire/Wheel Blocked Force for Road NVH Application

2005-05-16
2005-01-2260
Past studies have shown that NVH CAE tire model quality is not adequate to correctly capture a mid-frequency range (100-300 Hz). A new methodology has been developed to estimate tire forces that are independent of dynamic characteristics of vehicle suspension and rig test fixture. The forces are called tire blocked forces and defined as a force generated by a tire/wheel system whose boundary condition is constrained. The tire blocked force is estimated by removing the dynamic effect of the tire force measurement fixture. The blocked forces can be applied to CAE models to predict vehicle road NVH responses. This new method can also be used as a target setting tool. Tire suppliers can check the blocked tire forces from the rig testing data against a force target before they submit tires to automotive manufacturers for evaluations on a prototype vehicle.
Technical Paper

A New Tire Model for Road Loads Simulation: Full Vehicle Validation

2004-03-08
2004-01-1579
Road loads tire models are used in the automotive industry in full vehicle simulations to compute the loading from the road into the chassis encountered in proving ground durability events. Such events typically include Belgian Block events, bump events, potholes and others. Correctly capturing tire enveloping forces in such events has historically been challenging - several different approaches exist each with its own limitations. In this paper a model is presented which captures the first order tire dynamics (frequencies lower than 80 Hz) and associated enveloping loading without the need of an effective road profile. The theory behind this tire model is briefly introduced. Importantly, a comprehensive study of the validation of the tire model is given which shows correlation for full vehicle dynamic proving ground events. A Virtual Tire Lab (VTL) pre-processing tool is also presented which is used to compute tire model input parameters from a validated non-linear FEA tire model.
Technical Paper

A Novel Optimization Model for Equipment Capacity Planning with Total Number of Assets and Changeover Minimization

2021-06-16
2021-01-5064
Capacity planning is one of the major factors in saving capital and avoiding unnecessary costs in any manufacturing system particularly large original equipment manufacturers (OEMs). However, many manufacturing systems still suffer from huge costs incurred due to a lack of applying a robust capacity planning optimization model. Most of the developed models in literature do not consider real-life situations in manufacturing systems and, hence, are not easy to implement. In this paper, a novel capacity planning optimization model considers various important features of a manufacturing system. The objective function of the model is to minimize the weighted sum of the total number of assets and changeovers. A unique feature of the developed model is the capability of providing the number of additional required assets of each type in case the existing assets are not capable of covering the entire demand.
Technical Paper

A Packaging Layout to Mitigate Crosstalk for SiC Devices

2018-04-03
2018-01-0462
SiC devices have inherent fast switching capabilities due to their superior material properties, and are considered potential candidates to replace Si devices for traction inverters in electrified vehicles in future. However, due to the comparatively low gate threshold voltage, SiC devices may encounter oscillatory false triggering especially during fast switching. This paper analyzed the causes of false triggering, and also studied the impact of a critical parasitic parameter - common source inductance. It is shown that crosstalk is the main cause for the false triggering in the case and some positive common source inductance help to mitigate the crosstalk issue. A packaging layout method is proposed to create the positive common source inductance through layout of control terminals / busbars, and/or the use of control terminal bonded wires at different height.
Technical Paper

A Parametric Approach for Vehicle Frame Structure Dynamics Analysis

2007-05-15
2007-01-2335
The capability to drive NVH quality into vehicle frame design is often compromised by the lack of available predictive tools that can be developed and applied within the timeframe during which key architectural design decisions are required. To address this need, a new parametric frame modeling approach was developed and is presented in this paper. This fully parameterized model is capable of fast modal, static stiffness & weight assessments, as well as DSA/optimization for frame design changes. This tool has been proven to be effective in improving speed, quality and impact of NVH hardware decisions.
Technical Paper

A Particle Swarm Optimization-Based Method for Fast Parametrization of Transmission Plant Models

2019-04-02
2019-01-0344
Transmission system models require a high level of fidelity and details in order to capture the transient behaviors in drivability and fuel economy simulations. Due to model fidelity, manufacturing tolerances, frictional losses and other noise sources, parametrization and tuning of a large number of parameters in the plant model is very challenging and time consuming. In this paper, we used particle swarm optimization as the key algorithm to fast correlate the open-loop performance of an automatic transmission system plant model to vehicle launch and coast down test data using vehicle control inputs. During normal operations, the model correlated well with test data. For error states, due to the lack of model fidelity, the model cannot reproduce the same error state quantitatively, but provided a valuable methodology for qualitatively identifying error states at the early stages.
Technical Paper

A Plastic Appliqué's Strain Field Determination by Experimental Shearographic Analyses Under an Applied Thermal Load

2005-05-10
2005-01-2066
The objective of this paper is to develop a test capable of ranking lift-gates based on strain concentration levels reflected in fringe characteristics in the known stress/strain concentration and fracture vicinity. First, the system (lift gate glass, adhesive and appliqué) is chosen as test sample since the subsystem (local appliqué) does not exhibit the failure mode observed in the field test. Subsequently, it has been identified that the thermal component (rather than mechanical) is the predominant load by laser scanning vibrometry and confirmed via field test data. Next, digital shearography has been selected as the measurement and visualization tool of strain distribution due to its various advantages such as full field view and non-contact advantages. Finally, the test method has been applied to rank and optimize the structural configuration around appliqués' to reduce / eliminate failure.
Technical Paper

A Post-processor for Finite Element Stress-based Fatigue Analysis

2006-04-03
2006-01-0537
Explicit finite element simulations were conducted on an aluminum wheel model where a rotating bend moment was applied on its hub to simulate wheel cornering fatigue testing. A post-processor was developed to calculate equivalent von Mises alternating and mean stresses from stress tensor. The safety factors of fatigue design for each finite element were determined to assess the fatigue performance by utilizing the Goodman linear relationship. Elements with low safety factors were identified due to the prescribed boundary conditions and stress concentrations arising from wheel geometry.
X