Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Emissions Optimisation by Camshaft Profile Switching

High engine efficiency and low emissions on spark ignition engines can be achieved with a new camshaft profile switching device. This enables the use of two camshaft profiles for inlet and exhaust that can be switched independent of each other by any engine management input. This paper proposes the use of this device to give an excellent torque curve together with reduced emissions, by selecting from two discrete inlet and exhaust camshaft profiles and timings against engine parameters such as speed, load and temperature.
Technical Paper

Improving Fuel Economy in a Turbocharged DISI Engine Already Employing Integrated Exhaust Manifold Technology and Variable Valve Timing

Many new technologies are being developed to improve the fuel consumption of gasoline engines, including the combination of direct fuel injection with turbocharging in a so-called ‘downsizing’ approach. In such spark ignition engines operating on the Otto cycle, downsizing targets a shift in the operating map such that the engine is dethrottled to a greater extent during normal operation, thus reducing pumping losses and improving fuel consumption. However, even with direct injection, the need for turbine protection fuelling at high load in turbocharged engines - which is important for customer usage on faster European highways such as German Autobahns - brings a fuel consumption penalty over a naturally-aspirated engine in this mode of operation.
Technical Paper

Ion Current Signal Interpretation via Artificial Neural Networks for Gasoline HCCI Control

The control of Homogeneous Charge Compression Ignition (HCCI) (also known as Controlled Auto Ignition (CAI)) has been a major research topic recently, since this type of combustion has the potential to be highly efficient and to produce low NOx and particulate matter emissions. Ion current has proven itself as a closed loop control feedback for SI engines. Based on previous work by the authors, ion current was acquired through HCCI operation too, with promising results. However, for best utilization of this feedback signal, advanced interpretation techniques such as artificial neural networks can be used. In this paper the use of these advanced techniques on experimental data is explored and discussed. The experiments are performed on a single cylinder cam-less (equipped with a Fully Variable Valve Timing (FVVT) system) research engine fueled with commercially available gasoline (95 ON).
Technical Paper

Linear Regression and its Use in Predicting the Link Between Ionization Current and the Pressure Signal in a Hybrid Mode Engine

Homogenous Charge Compression Ignition (HCCI) is an alternative to Spark Ignited (SI) combustion, which can provide part-load efficiencies as high as compression ignition engines and energy densities as high as SI engines, without high levels of NOx or Particulate Matter (PM). The principle of operation involves reaching the thermal oxidization barrier of a homogeneous air-fuel mixture. This combustion practice is enabled by diluting then compressing the mixture with the Trapped Residual Gases (TRG) to dilute the initial charge thus keeping combustion temperatures down. Introduction of exhaust gasses in the mixture can be achieved by the use of early exhaust valve closure and late inlet valve opening. The charge is well mixed avoiding particulate emissions, and by using exhaust gasses for load regulation the need for throttled operation is removed allowing the realization of high efficiencies, low pumping losses and a resulting 15 - 20% improvement in fuel economy.
Journal Article

Multi-Plane Airflow Measurements in the Cylinder of a Tumble Based Engine

The tumble flow in modern spark ignition engines is assuming an evermore important role for fuel guiding, air/fuel mixing and the generation of turbulence kinetic energy to enhance the combustion process. This paper describes results obtained with laser Doppler anemometry in multiple vertical planes in the cylinder of a motored, tumble flow engine and looks at the post processed data in terms of tumble ratios and mean and turbulence kinetic energies. The tumble results indicate very different flow fields in parallel planes lying in the main tumble direction, showing the complex nature of the flows in the cylinder. A simple method of integrating the tumble ratios from the different planes is suggested, leading to a tumble ratio more in line with those expected from an integrated method of measuring tumble, albeit these results are crank angle dependent. The tumble in a perpendicular plane shows unexpected asymmetries and values for the tumble.
Journal Article

The Lotus Range Extender Engine

The paper discusses the concept, specification and performance of a new, dedicated range extender engine for plug-in series hybrid vehicles conceived and designed by Lotus Engineering. This has been undertaken as part of a consortium project called Limo Green, part-funded by the UK government. The Lotus Range Extender engine has been conceived from the outset specifically as an engine for a plug-in series hybrid vehicle, therefore being free of some of the constraints placed on engines which have to mate to conventional, stepped mechanical transmissions. The paper starts by defining the philosophical difference between an engine for range extension and an engine for a full series hybrid vehicle, a distinction which is important with regard to how much power each type must produce. As part of this, the advantages of the sparkignition engine over the diesel are outlined.