Refine Your Search


Search Results

Technical Paper

BSFC Investigation Using Variable Valve Timing in a Heavy Duty Diesel Engine

Variable valve actuation in heavy duty diesel engines is not well documented, because of diesel engine feature, such as, unthrottled air handling, which gives little room to improve pumping loss; a very high compression ratio, which makes the clearance between the piston and valve small at the top dead center. In order to avoid strike the piston while maximizing the valve movement scope, different strategies are adopted in this paper: (1) While exhaust valve closing is fixed, exhaust valve opening is changed; (2) While exhaust valve closing is fixed, late exhaust valve opening: (3) While inlet valve opening is fixed, inlet valve closing is changed; (4) Delayed Inlet valve and exhaust valve openings and closings; (5) Changing exhaust valve timing; (6) changing inlet valve timing; (7) Changing both inlet and exhaust timing, will be used.
Technical Paper

Challenges and Potential of Intra-Cycle Combustion Control for Direct Injection Diesel Engines

The injection timing of a Diesel internal combustion engine typically follows a prescribed sequence depending on the operating condition using open loop control. Due to advances in sensors and digital electronics it is now possible to implement closed loop control based on in cylinder pressure values. Typically this control action is slow, and it may take several cycles or at least one cycle (cycle-to-cycle control). Using high speed sensors, it becomes technically possible to measure pressure deviations and correct them within the same cycle (intra-cycle control). For example the in cylinder pressure after the pilot inject can be measured, and the timing of the main injection can be adjusted in timing and duration to compensate any deviations in pressure from the expected reference value. This level of control can significantly reduce the deviations between cycles and cylinders, and it can also improve the transient behavior of the engine.
Technical Paper

Control-Oriented Dynamics Analysis for Electrified Turbocharged Diesel Engines

Engine electrification is a critical technology in the promotion of engine fuel efficiency, among which the electrified turbocharger is regarded as the promising solution in engine downsizing. By installing electrical devices on the turbocharger, the excess energy can be captured, stored, and re-used. The electrified turbocharger consists of a variable geometry turbocharger (VGT) and an electric motor (EM) within the turbocharger bearing housing, where the EM is capable in bi-directional power transfer. The VGT, EM, and exhaust gas recirculation (EGR) valve all impact the dynamics of air path. In this paper, the dynamics in an electrified turbocharged diesel engine (ETDE), especially the couplings between different loops in the air path is analyzed. Furthermore, an explicit principle in selecting control variables is proposed. Based on the analysis, a model-based multi-input multi-output (MIMO) decoupling controller is designed to regulate the air path dynamics.
Journal Article

Crankcase Sampling of PM from a Fired and Motored Compression Ignition Engine

Crankcase emissions are a complex mixture of combustion products and aerosol generated from lubrication oil. The crankcase emissions contribute substantially to the total particulate matter (PM) emitted from an engine. Environment legislation demands that either the combustion and crankcase emissions are combined to give a total measurement, or the crankcase gases are re-circulated back into the engine. There is a lack of understanding regarding the physical processes that generate crankcase aerosols, with a paucity of information on the size/mass concentrations of particles present in the crankcase. In this study the particulate matter crankcase emissions were measured from a fired and motored 4-cylinder compression ignition engine at a range of speeds and crankcase locations.
Technical Paper

Experimental Interpretation of Compression Ignition In-Cylinder Flow Structures

Understanding and predicting in-cylinder flow structures that occur within compression-ignition engines is vital if further optimisation of combustion systems is to be achieved. To enable this prediction, fully validated computational models of the complex turbulent flow-fields generated during the intake and compression process are needed. However, generating, analysing and interpreting experimental data to achieve this validation remains a complex challenge due to the variability that occurs from cycle to cycle. The flow-velocity data gathered in this study, obtained from a single-cylinder CI engine with optical access using high-speed PIV, demonstrates that significantly different structures are generated over different cycles, resulting in the mean flow failing to adequately reflect the typical flow produced in-cylinder.
Technical Paper

Experimental Study of DI Diesel Engine Performance Using Three Different Biodiesel Fuels

Methyl esters derived from vegetable oils by the process of transesterification (commonly referred as ‘biodiesel’), can be used as an alternative fuel in compression ignition engines. In this study, three different vegetable oils (rape, soy and waste oil) were used to produce biodiesel fuels that were then tested in a four cylinder direct injection engine, typically used in small diesel genset applications. Engine performance and emissions were recorded at five load conditions and at two different speeds. This paper presents the results obtained for measurements of NOx and smoke opacity at the different speed and load conditions for the three biodiesels, and their blends (5 and 50% v/v) with mineral diesel. A simple combustion analysis was also performed where ignition delay, position and magnitude of peak cylinder pressure and heat release rate were examined to asses how the variation of chemical structure and blend percentage affects engine performance.
Technical Paper

Explicit Model Predictive Control of the Diesel Engine Fuel Path

For diesel engines, fuel path control plays a key role in achieving optimal emissions and fuel economy performance. There are several fuel path parameters that strongly affect the engine performance by changing the combustion process, by modifying for example, start of injection and fuel rail pressure. This is a multi-input multi-output problem. Linear Model Predictive Control (MPC) is a good approach for such a system with optimal solution. However, fuel path has fast dynamics. On-line optimisation MPC is not the good choice to cope with such fast dynamics. Explicit MPC uses off-line optimisation, therefore, it can be used to control the system with fast dynamics.
Technical Paper

Human Factors Issues in the Application of a Novel Process Description Environment for Machine Design and Control Developed under the Foresight Vehicle Programme

In the globalization of the automotive businesses, manufacturing companies and their suppliers are forced to distribute the various lifecycle phases in different geographical locations. Misunderstandings arising from the variety of personnel involved, each with different requirements, backgrounds, roles, cultures and skills for example can result in increased cost and development time. To enable collaborating companies to have a common platform for interaction, the COMPANION project at Loughborough University has been undertaken to develop a common model-based environment for manufacturing automotive engines. Through the use of this environment, the stakeholders will be able to “visualize” consistently the evolution of automated systems at every lifecycle stage i.e. requirements definition, specification, design, analysis, build, evaluation, maintenance, diagnostics and recycle.
Technical Paper

Interaction Between Ceramic Matrix Composite and Organic Pad Materials and its Impact on the Friction Performance

Ceramic matrix composites (CMC) have been increasingly used as alternative materials of the rotors of friction brakes. However there is still a need for a better understanding of fundamentals of CMC rotors and their associated friction materials. In this paper, the friction performance at the initial stage was characterized by testing on a laboratory-scale dynamometer and a car for brakes consisting of rotors made of carbon-fiber-reinforced carbon-silicon carbide (Cf/C-SiC) composite, and pads with organic liners. The characteristics of friction surface and its evolution were studied through focused imaging on the surface of the rotor after testing on the dynamometer. Both dynamometer and vehicle tests showed that bedding was essential to reach the required coefficient of friction (CoF). Sustainable transfer layer was successfully deposited on the surface of silicon in the early stage of bedding, but the deposition became difficult on that of carbon constituents and silicon carbide.
Technical Paper

Low Power Autoselective Regeneration of Monolithic Wall Flow Diesel Particulate Filters

This paper presents research into a novel autoselective electric discharge method for regenerating monolithic wall flow diesel particulate filters using low power over the entire range of temperatures and oxygen concentrations experienced within the exhaust systems of modern diesel engines. The ability to regenerate the filter independently of exhaust gas temperature and composition significantly reduces system complexity compared to other systems. In addition, the system does not require catalyst loading and uses only mass- produced electronic and electrical components, thus reducing the cost of the after-treatment package. Purpose built exhaust gas simulation test rigs were used to evaluate, develop and optimise the autoselective regeneration system. On-engine testing demonstrated the performance of the autoselective regeneration process under real engine conditions.
Technical Paper

Mode Transition Optimisation for Variable Displacement Engines

The deactivation of one or more cylinders in internal combustion engines has long been established in literature as a means of reducing engine pumping losses and thereby improving brake specific fuel consumption. As down-sizing and down-speeding of modern engines becomes more extreme, drivability issues associated with mode transition become more acute and need to be managed within a suitable calibration framework. This paper presents methodology by which a calibration may be deduced for optimal mode-transitioning in respect of minimising the torque disturbance as cylinders are deactivated and re-activated. At the outset of this study a physics based engine model is used to investigate the key parameters that influence the transition. Having understood these, experiments are designed to establish the level of mode transition disturbance using quantitative statistical indicators such that the cost function may be defined and an optimisation undertaken.
Journal Article

Off-Road Tire-Terrain Interaction: An Analytical Solution

A novel semi-analytical solution has been developed for the calculation of the static and dynamic response of an off road tire interacting with a deformable terrain, which utilizes soil parameters independent of the size of the contact patch (size-independent). The models involved in the solution presented, can be categorized in rigid and/or pneumatic tires, with or without tread pattern. After a concise literature review of related methods, a detailed presentation of the semi-analytical solution is presented, along with assumptions and limitations. A flowchart is provided, showing the main steps of the numerical implementation, and various test cases have been examined, characterized in terms of vertical load, tire dimensions, soil properties, deformability of the tire, and tread pattern. It has been found that the proposed model can qualitatively capture the response of a rolling wheel on deformable terrain.
Technical Paper

Optical Diagnostics and CFD Validation of Jacket Cooling System Filling and the Occurrence of Trapped Air

This paper reports the findings from an experimental investigation of the engine cooling jacket filling process for a medium duty off-highway diesel engine to characterise the physical processes that lead to the occurrence of trapped air. The motivation for the project was to provide knowledge and data to aid the development of a computational design tool capable of predicting the amount and location of trapped air in a cooling circuit following a fill event. To quantify the coolant filling process, a transparent replica of a section of the cylinder head cooling core was manufactured from acrylic to allow the application of optical diagnostic techniques. Experimentation has characterised the coolant filling process through the use of three optical techniques. These include the two established methods of High-Speed Imaging and Particle Image Velocimetry (PIV), as well as a novel approach developed for tracking the liquid-air interface during the fill event.
Technical Paper

Optical Investigation on the Ability of a Cordierite Substrate Mixing Device to Combat Deposits in SCR Dosing Systems

Selective catalytic reduction (SCR) has become the mainstream approach for removing heavy-duty (HD) diesel engine NOx emissions. Highly efficient SCR systems are a key enabling technology allowing engines to be calibrated for very high NOx output with a resultant gain in fuel consumption while still maintaining NOx emissions compliance. One key to the successful implementation of high efficiency SCR at elevated engine out NOx levels is the ability to introduce significantly more AdBlue into the exhaust flow while still ensuring complete ammonia production and avoiding the formation of deposits. This paper presents a body of experimental work conducted on an exhaust test bench using optical techniques including high-speed imaging and phase Doppler interferometry (PDI), applied under representative exhaust conditions to a HD diesel engine after-treatment system with optical access inside the mixer tube. Two different sprays were used to dose AdBlue onto the mixing device.
Technical Paper

Performance and Exhaust Emission Evaluation of a Small Diesel Engine Fuelled with Coconut Oil Methyl Esters

Renewable sources of energy need to be developed to fulfill future energy demands in areas such as the Maldives where traditional sources of raw materials are limited or non-existent. This paper explores the use of an alternative fuel derived from coconut oil that can be produced in the Maldives and can be used in place of diesel fuel. The main advantage of this particular fuel is that it is a highly saturated oil with a calorific value close to standard diesel fuel. The viscosity of the crude coconut oil is much higher than standard diesel fuel. To reduce the viscosity and to make the oil more suitable for conventional diesel engines methyl esters were produced using the transesterification process (1). The engine performed well on the coconut oil methyl esters although there was a small reduction in power consistent with the lower calorific value of the alternative fuel. Comparative performance data together with the emission levels for the two fuels are presented.
Technical Paper

Prediction of NOx Emissions of a Heavy Duty Diesel Engine with a NLARX Model

This work describes the application of Non-Linear Autoregressive Models with Exogenous Inputs (NLARX) in order to predict the NOx emissions of heavy-duty diesel engines. Two experiments are presented: 1.) a Non-Road-Transient-Cycle (NRTC) 2.) a composition of different engine operation modes and different engine calibrations. Data sets are pre-processed by normalization and re-arranged into training and validation sets. The chosen model is taken from the MATLAB Neural Network Toolbox using the algorithms provided. It is teacher forced trained and then validated. Training results show recognizable performance. However, the validation shows the potential of the chosen method.
Technical Paper

Real Time Energy Management of Electrically Turbocharged Engines Based on Model Learning

Engine downsizing is a promising trend to decarbonise vehicles but it also poses a challenge on vehicle driveability. Electric turbochargers can solve the dilemma between engine downsizing and vehicle driveability. Using the electric turbocharger, the transient response at low engine speeds can be recovered by air boosting assistance. Meanwhile, the introduction of electric machine makes the engine control more complicated. One emerging issue is to harness the augmented engine air system in a systematical way. Therefore, the boosting requirement can be achieved fast without violating exhaust emission standards. Another raised issue is to design an real time energy management strategy. This is of critical to minimise the required battery capacity. Moreover, using the on-board battery in a high efficient way is essential to avoid over-frequent switching of the electric machine. This requests the electric machine to work as a generator to recharge the battery.
Technical Paper

Review of Selection Criteria for Sensor and Actuator Configurations Suitable for Internal Combustion Engines

This literature review considers the problem of finding a suitable configuration of sensors and actuators for the control of an internal combustion engine. It takes a look at the methods, algorithms, processes, metrics, applications, research groups and patents relevant for this topic. Several formal metric have been proposed, but practical use remains limited. Maximal information criteria are theoretically optimal for selecting sensors, but hard to apply to a system as complex and nonlinear as an engine. Thus, we reviewed methods applied to neighboring fields including nonlinear systems and non-minimal phase systems. Furthermore, the closed loop nature of control means that information is not the only consideration, and speed, stability and robustness have to be considered. The optimal use of sensor information also requires the use of models, observers, state estimators or virtual sensors, and practical acceptance of these remains limited.
Technical Paper

Streamlined Tails - The Effects of Truncation on Aerodynamic Drag

Significant aerodynamic drag reduction is obtained on a bluff body by tapering the rear body. In the 1930’s it was found that a practical low drag car body could be achieved by cutting off the tail of a streamlined shape. The rear end of a car with a truncated tail is commonly referred to as a Kamm back. It has often been interpreted as implying that the drag of this type of body is almost the same as that for a fully streamlined shape. From a review of the limited research into truncated streamlined tails it is shown in this paper that, while true for some near axisymmetric bodies, it is not the case for many more car-like shapes. For these shapes the drag reduction from an elongated tail varies almost linearly with the reduction in cross section area. A CFD simulation to determine the drag reduction from a truncated streamlined tail of variable length on the simple Windsor Body is shown by way of confirmation.
Technical Paper

Study on Optimization of Regenerative Braking Control Strategy in Heavy-Duty Diesel Engine City Bus using Pneumatic Hybrid Technology

Recovering the braking energy and reusing it can significantly improve the fuel economy of a vehicle which is subject to frequent braking events such as a city bus. As one way to achieve this goal, pneumatic hybrid technology converts kinetic energy to pneumatic energy by compressing air into tanks during braking, and then reuses the compressed air to power an air starter to realize a regenerative Stop-Start function. Unlike the pure electric or hybrid electric passenger car, the pneumatic hybrid city bus uses the rear axle to achieve regenerative braking function. In this paper we discuss research into the blending of pneumatic regenerative braking and mechanical frictional braking at the rear axle. The aim of the braking function is to recover as much energy as possible and at the same time distribute the total braking effort between the front and rear axles to achieve stable braking performance.